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Abstract: This work derives exact expressions for the radiation from two conductors non isolated TEM transmission lines of any

small electric size cross section in free space. We cover the cases of infinite, semi-infinite and finite transmission lines and show

that while an infinite transmission line does not radiate, there is a smooth transition between the radiation from a finite to a semi-

infinite transmission line. Our analysis is in the frequency domain and we consider transmission lines carrying any combination

of forward and backward waves. The analytic results are validated by successful comparison with ANSYS commercial software

simulation results, and successful comparisons with other published results.

1 Introduction

The aim of this work is to calculate the radiated power from two
conductors transmission lines (TL) in free space. We consider any
cross section of small electric size (shown in Figure 1) and TL of
any length, analysing the infinite, semi-infinite and finite TL cases.
The generalization of this work for TL inside dielectric insulator will
be published separately. Some preliminary results of this work have
been presented in [1, 2].

Fig. 1: A basic configuration of a two ideal conductors TL, with a
well defined separation between the conductors. The surface current
distributions on the contours of the conductors is known from elec-
trostatic considerations, and given that for a two-conductors TL there
is only one (differential) TEM mode, the total current is the same on
both conductors but with opposite signs. The arrow shows the vec-
tor distance between the centre of the surface current distributions,
named d, obtained for a twin lead equivalent (see Appendix A). c1,2
are the contours of the “upper” and “lower” conductors, respectively.
We consider the case of small electric cross section kd ≪ 1, k is the
wavenumber.

One of the earliest analysis of radiation from transmission lines
(TL) is presented in the paper “Radiation from Transmission Lines”
[3], published in 1923. In this publication the radiation from open
ended twin lead TL in free space, at the resonance frequencies is
calculated.

A more conclusive and full analysis is presented in the 1951 paper
“Radiation Resistance of a Two-Wire Line” [4]. This work calculates
the radiation resistance of a twin lead loaded at its termination by
any impedance, considering TL ohmic losses as well. In this work
we consider 0 ohmic losses, but generalize [4] as follows:

• We consider the separate radiation of the forward and backward
waves and also their combination. From such analysis it comes out
that the interference term between the waves does not contribute to
the radiated power.
• We analyse the radiation from semi-infinite TL, and show the
connection with the finite TL case.
• We do not limit ourselves to the twin lead cross section, and
present a general algorithm for TL of any cross section.
• We develop a more accurate radiation resistance.

Additional works on the subject can be found in [5–7]. It is inter-
esting to remark that [8] claims that balanced TL do not radiate.
Although [8] is only an educational document of a university, such
inaccuracy is a symptom showing that the subject of radiation from
TL is not well enough known in the electromagnetic community,
requiring additional research on this subject.

There are two appendices in this work. In Appendix A we cal-
culate the far potential vector from a general cross section TL (see
Figure 1), and show that this far potential vector can be represented
in terms of an equivalent twin lead as shown in Figure 2. By “far”
we mean in the transverse x, y direction because this appendix is
not limited to finite TL, so for being able to use the results for a
semi-infinite TL, we keep everything in cylindrical coordinates, and
consider the TL between z1 and z2 on the z axis. The twin lead
model is defined without loss of generality on the x, z plane and
allows us to define x directed termination currents as current fila-
ments [4] across the termination (see Figure 2). Those termination
currents contribute a far x directed potential vector, calculated in
Appendix A.

In Appendix B we show how to calculate for any cross section the
parameters needed to determine the radiation: the separation distance
d in the twin lead representation, and the characteristic impedance
Z0. We perform this analysis on two cross section examples.

It is important to remark that the calculations in this work and in
[3–7] are completely different from what is presented as “travelling
wave antenna” in many antenna and electromagnetic books like [9–
13]. The last ones consider only the current in the “upper” conductor
in Figure 2, while we consider all 4 currents appearing in the figure.
This is not an attempt to criticize those works, but only to mention
their results do not represent radiation from transmission lines, hence
are not comparable with the results of this work or [3–7].

It should be also mentioned that power loss from TL is also
affected by nearby objects interfering with the fields, line bends,
irregularities, etc. This is certainly true, but those affect not only the
radiation, but also the basic, “ideal” TL model in what concerns the
characteristic impedance, the propagation wave number, etc. Those
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Fig. 2: The transmission line is modelled as a twin lead in free space,
with distance d between the conductors. The currents in the transmis-
sion line flow in the z direction at x = ±d/2 and they contribute to
the magnetic vector potential Az . The termination currents (source
or load) flow in the x direction and contribute the magnetic vector
potential Ax. The arrows on the conductors show the conventional
directions of those currents. The wires appear in the figure with finite
thickness, but are considered of 0 radius. The transmission line goes
in the z direction from z1 to z2.

non-ideal phenomena are not considered in the current work, nor in
[3–7], and also not in [9–13].

The methodology we use for calculating radiation losses is first
order perturbation: we use the lossless (0’th order solution) for
the electric current to derive the losses, and we therefore use in
Appendix A the e−jkz dependence. This methodology is used to
derive the ohmic and dielectric losses [10–12, 14], and the same
approach is used in different radiation schemes from free electrons:
one uses the 0’th order current (which is unaffected by the radia-
tion) to calculate the radiation [17–19]. To be mentioned that the
same approach has been used in [3–7] (although [4] discussed about
higher order terms, without applying them).

The main text is organized as follows. In Section II we use
the results of Appendix A to calculate the power radiated from a
finite TL carrying a forward wave current, and generalize this result
for any combination of waves. As mentioned earlier, the results of
Appendix A are applicable also for semi-infinite TL, but we prefer
to start with the finite TL, because in the following Section 3 we
validate the analytic results of Section 2 by comparing them with
ANSYS commercial software simulation results, and with published
results obtained by other authors.

Section 4 we base on Appendix A to analyse an infinite and semi-
infinite TL. As expected, an infinite TL does not radiate and rather
carries power in the z direction only, but a semi-infinite TL does
radiate, and we show in this section the connection between the finite
and semi-infinite case and how the transition between them occurs.
Here, it is important to mention that in some senses a finite matched
TL is very similar to an infinite TL: in both cases there is no reflected
wave, but they are very different in what concerns radiation: the first
radiates and the second does not.

In Section 5 we discuss the radiation resistance and generalize the
formula derived in [4].

The work is ended with some concluding remarks.
Note: through this work, the phasor amplitudes are RMS val-

ues, hence there is no 1/2 in the expressions for power. Also, it
is worthwhile to mention that the results of this work depend on
physical sizes relative to the wavelength, and hence are valid for all
frequencies.

2 Power radiated from a finite TL

2.1 Matched TL

We calculate in this subsection the power radiated form a TL of
length 2L, carrying a forward wave, represented by the current

I(z) = I+e−jkz
(1)

We set z1 = −L and z2 = L in the expression for the z directed
magnetic vector potential in Eq. (A.12) from Appendix A, and obtain
in spherical coordinates:

Az = µ0G(r)F(z)(θ, ϕ) (2)

where G(s) = e−jks

4πs is the 3D Green’s function, and

F(z)(θ, ϕ) = jI+2Lkd sin θ cosϕ sinc [kL(1− cos θ)] (3)

is the directivity function, and the subscript (z) denotes the con-
tribution from the z directed currents. The sinc function is defined
sinc(x) ≡ sin x/x. To obtain the far fields (those decaying like
1/r), the ∇ operator is approximated by −jkr̂ and one obtains:

H(z) =
1

µ0
∇× (Azẑ) = jkG(r)F(z)(θ, ϕ) sin θϕ̂ (4)

and E(z) = η0H(z) × r̂, where η0 =
√

µ0/ǫ0 = 120πΩ is the
free space impedance. For the contribution of the x directed end
currents we sum the results for the x directed magnetic vector poten-
tial from Eq. (A.14) in Appendix A (setting z1 = −L and z2 = L),
obtaining

Ax = µ0G(r)F(x)(θ, ϕ) (5)

where

F(x)(θ, ϕ) = 2jI+d sin [kL(1− cos θ)] (6)

is the directivity function, and the subscript (x) denotes the contri-
bution from the x directed currents. The fields from the x directed
end currents are calculated, obtaining

H(x) =
1

µ0
∇× (Axx̂) = −jkG(r)F(x)(cos θ cosϕϕ̂+ sinϕθ̂)

(7)
and E(x) = η0H(x) × r̂. Summing the fields contributed by the z
directed currents with those contributed by the x directed currents,
we obtain H = H(z) +H(x):

H = jkG(r)[ϕ̂(F(z) sin θ − F(x) cos θ cosϕ)− θ̂F(x) sinϕ].
(8)

Using Eqs (3) and (6), the explicit expression for the far magnetic
field is

H
+ = −G(r)2kdI+ sin

[
2kL sin2(θ/2)

]
[ϕ̂ cosϕ− θ̂ sinϕ].

(9)
We now use the superscript + on all the quantities calculated in
this subsection, to denote that they refer to a forward wave. The far
electric field is

E
+ = η0H

+ × r̂ (10)

We remark that the polarization of the fields is not well defined at
θ = 0 (as shown in Figure 3), but this is not a problem in this case,
because the fields are 0 at this point. The far Poynting vector S+ =
E
+ ×H

+∗ comes out

S
+ =

r̂η0k
2d2|I+|2
4π2r2

sin2
[
2kL sin2(θ/2)

]
(11)

so that the total radiated power is calculated via
∫2π
0

∫π
0 sin θdθdϕr2r̂ ·

S, comes out

P+
rad = 60Ω|I+|2(kd)2 [1− sinc(4kL)] . (12)

The radiation pattern function is calculated from the radial point-
ing vector (Eq. 11) and the total power in Eq. (12): D+ =
4πr2S+

r /P+
rad, which comes out

D+(θ) = 2
sin2[2kL sin2(θ/2)]

[1− sinc(4kL)]
. (13)

The function D+ is 0 for θ = 0, and its number of lobes increases as
the TL length increases. A one dimensional plot of D+ as function
of θ for different TL lengths is shown in Figure 4.

IET Research Journals, pp. 1–12

2 c© The Institution of Engineering and Technology 2015



Fig. 3: The polarization of the H+ field ϕ̂ cosϕ− θ̂ sinϕ , accord-
ing to Eqs. (9), around θ = 0 (“north pole”). The z axis comes
toward us from the centre of the plot (at θ = 0), ϕ is 0 at the right
side and increases counterclockwise. The polarization is not defined
at θ = 0, but the fields are 0 at this location.
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Fig. 4: D+ as function of θ for TL 2L = λ/4, λ/2, 3λ/4 and λ.

The radiated power relative to the forward wave propagating

power (P+ = |I+|2Z0) is given by

P+
rad

P+ =
60Ω

Z0
(kd)2 [1− sinc(4kL)] , (14)

As results from Eq. (14), the calculation of the relative radiated
power requires the knowledge of two parameters: the separation dis-
tance in the twin lead representation d (relative to the wavelength),
and the characteristic impedance of the actual cross section Z0, and
in Appendix B we show examples of how to calculate this two
parameters for different cross sections.

In the following subsection we generalize the radiation losses for
a TL with any termination.

2.2 Generalization for non matched line

We generalize here the result (12) obtained for the losses of a finite
TL carrying a forward wave to any combination of waves, as follows:

I(z) = I+e−jkz + I−ejkz (15)

where I+ is the forward wave phasor current, as used in the previous
subsection and I− is the backward wave phasor current, still defined
to the right in the “upper” line in Figure 2.

The solution for a backward moving wave (only) on the finite TL,
with a current phasor amplitude I− can be found by first solving for
a reversed z axis in Figure 2, i.e. a z axis going to the left, replac-
ing in the solution I+ → −I−. But this defines exactly the same
configuration for the backward wave, as the original z axis defined
for a forward wave, hence resulting in the same solution in Eqs. (9)
and (10). Now to express the solution for the backward wave in the
original coordinates, defined by the right directed z axis, one has

to replace: θ → π − θ, ϕ → −ϕ, and therefore also θ̂ → −θ̂ and
ϕ̂ → −ϕ̂. Hence, for a backward wave, the far H field is

H
− = −G(r)2kdI− sin

[
2kL cos2(θ/2)

]
[ϕ̂ cosϕ+ θ̂ sinϕ],

(16)

so that the polarization at θ = π is not defined, and it looks like in
Figure 3, this time the centre of the plot is θ = π, and ϕ increases
clockwise. Again, this is no problem because for this case the fields
vanish at θ = π.

For a backward wave only, the radiation pattern is:

D−(θ) = 2
sin2[2kL cos2(θ/2)]

[1− sinc(4kL)]
, (17)

which looks like in Figure 4, only reflected around θ = π/2.
We sum the fields of the forward and backward waves given in

Eqs. (9) and (16), obtaining

H = kG(r)2d

[−ϕ̂ cosϕ(I+ sin
[
2kL sin2(θ/2)

]
+ I− sin

[
2kL cos2(θ/2)

]
)+

θ̂ sinϕ(I+ sin
[
2kL sin2(θ/2)

]
− I− sin

[
2kL cos2(θ/2)

]
)],

(18)

so the far Poynting vector is

S =r̂η0
4(kd)2

16π2r2

{
|I+|2 sin2

[
2kL sin2(θ/2)

]
+ |I−|2

sin2
[
2kL cos2(θ/2)

]
+ 2 cos(2ϕ)

sin
[
2kL sin2(θ/2)

]
sin

[
2kL cos2(θ/2)

]
ℜ{I+I−∗}

}

(19)

The interference between the waves does not contribute to the
radiated power (because

∫2π
0 dϕ cos(2ϕ) = 0). The radiated power

comes out

Prad =60Ω(kd)2
(
|I+|2 + |I−|2

)
[1− sinc(4kL)] ≡

P+
rad + P−

rad, (20)

where P+
rad is given in Eq. (12) and P−

rad is similar, only replace I+

by I−.
The radiation pattern for the general case of forward and back-

ward waves is D = 4πr2Sr/Prad, where Sr is given in Eq. (19)
and Prad in (20). To express D independently of the currents, it is
convenient to consider a general TL circuit in Figure 5, for which the
relation between I+ and I− is

I−ejkL + ΓI+e−jkL = 0, (21)

where Γ ≡ ZL−Z0

ZL+Z0
. Using (21), the radiation pattern is

D(θ, ϕ) = 2
A2 + |Γ|2B2 − 2AB cos(2ϕ)ℜ{Γe−2jkL}

(1 + |Γ|2) [1− sinc(4kL)]
, (22)
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Fig. 5: TL fed by a generator VG with an internal impedance ZG,
loaded by ZL. The value of ZL affects indirectly the radiated power
by setting the relation between the forward and backward currents
I+ and I−.

where A and B are abbreviations for:

A ≡ sin
[
2kL sin2(θ/2)

]
B ≡ sin

[
2kL cos2(θ/2)

]
(23)

For a matched TL, Γ = 0, and Eq. (22) reduces to Eq. (13). We
remark that although the interference between the forward and back-
ward waves does not contribute to the radiated power (see Eq. 20), it
distorts the radiation pattern and introduces a ϕ dependence.

As mentioned in the introduction, the “travelling wave antenna”
presented in [9–13] do not represent transmission lines, and therefore
the radiation patterns in (13) or (22) are not comparable with those
presented in the above references. They will be however compared
with [6, 15, 16].

In the next section we validate the analytic results obtained in
this section, using ANSYS commercial software simulation and
additional published results on radiation losses from TL.

3 Validation of the analytic results

3.1 Comparison with ANSYS simulation results

We compare in this subsection the relative radiated power from a
two-conductor TL (Eq. 14) carrying a forward wave, with the rel-
ative radiation losses results obtained from ANSYS commercial
software simulation. For the comparison we use the cross section
of two parallel cylinders, for which the analytic solution is known
from image theory [10–12, 14], but also confirmed by Appendix B.
The cross section is shown in Figure 6. The diameters of the cylin-
ders are 2a = 0.0203λ, and the distance between their centres is
s = 0.02872λ, where the wavelength λ = 6.25 cm, corresponding
to the frequency of 4.8 GHz. The distance between the image cur-

Fig. 6: Cross section of two parallel cylinders: the distance between
the centres is s = 0.02872, and the diameters are 2a = 0.0203
wavelengths. The the red points show the current images which
define the twin lead representation, and the distance between them
d = 0.0203 wavelengths is calculated in Eq. (24).

rents (shown as red points in Figure 6) is the separation distance d in

the twin lead model, given by

d =
√

s2 − (2a)2 = 0.0203λ, (24)

so that (kd)2 = 0.016 is small enough, and the characteristic
impedance is

Z0 =
η0
π

ln

(
d+ s

2a

)
= 105.6 Ω (25)

Both analytic results for d and Z0 compare well with those calcu-
lated in Appendix B for this cross section.

We simulated the configuration in Figure 6 using ANSYS-HFSS
commercial software, in the frequency domain, FEM technique. The
box surface enclosing the device constitutes a radiation boundary,
implying absorbing boundary conditions (ABC), used to simulate
an open configuration that allows waves to radiate infinitely far into
space. ANSYS HFSS ABC, absorbs the wave at the radiation bound-
ary, essentially ballooning the boundary infinitely far away from
the structure. The enclosing box surface has to be located at least
a quarter wavelength from the radiating source. For the frequency of
4.8 GHz we used, the wavelength is 6.25 cm , and we chose the box
sides 7.5 cm in the x and y directions, and the TL length plus 2.5 cm
on each side in the z direction. For the interface to the device we
used lumped ports, which define perfect H boundaries everywhere
on the port plane, so that the E field on the port plane (outside the
conductors) is perpendicular to the conductors.

The simulation setup is shown schematically in Figure 7. The TL
is ended at both sides by lumped ports of characteristic impedance
Zport = 50Ω, but fed only from port 1 by forward wave volt-

age V +
port = 1V , so the equivalent Thévenin feeding circuit is a

generator of 2V +
port in series with a resistance Zport.

Fig. 7: Simulation setup for obtaining 2× 2 S matrices for different
TL lengths.

We obtained from the simulation S matrices defined for a char-
acteristic impedance of Zport at both ports (which is an arbitrary
choice), for different lengths of the transmission line. By symmetry,
the S matrix has the form

S =

(
Γ τ
τ Γ

)
, (26)

from which one may calculate the ABCD matrix of the TL [14, 20–
22]. We need only the A element from the matrix:

A =
1

2

[
τ + (1− Γ2)/τ

]
(27)

from which we compute the delay angle (or electrical length) of the
TL

Θ = arccos(A) (28)

The real part of Θ represents the phase accumulated by a for-
ward wave along the TL, and the imaginary part of Θ (which
is always negative) represents the relative decay of the for-
ward wave (voltage or current) due to losses (in our case there
are only radiation losses) along the TL, so that |I+(L)| =
|I+(−L)| exp(Im{Θ}). Therefore, the power carried by the for-

ward wave |P+(L)| = |P+(−L)| exp(2Im{Θ}), but for small
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losses |P+(L)| ≃ |P+(−L)|(1 + 2Im{Θ}), so that the difference

between the input and output values of P+ (which represent the radi-

ated power P+
rad in Eq. (14)), relative to the (average) power P+

carried by the wave is obtained by

P+
rad

P+ = −2Im{Θ}, (29)

where Im is the imaginary part and Im{Θ} < 0 always.
In Figure 8 and Table 1 we compare the analytic result in Eq. (14)

with the result obtained from simulation Eq. (29), for a fixed fre-
quency of 4.8 GHz and different TL lengths. We see that the
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Fig. 8: Relative radiation losses for a matched TL Prad/P
+: com-

parison between the analytic result in Eq. (14) and the simulation
result in Eq. (29) for different TL lengths in units of wavelengths.

TL length simulation (Eq. 29) theoretical (Eq. 14) % error

0.08 0.001963 0.001479 32.76

0.16 0.005796 0.005079 14.12

0.24 0.009502 0.008851 7.35

0.4 0.011115 0.010982 1.21

0.6 0.007987 0.008069 -1.02

0.8 0.009878 0.009774 1.06

0.96 0.009575 0.009603 -0.28

1.12 0.008198 0.008579 -4.44

1.2 0.008646 0.008874 -2.57

1.28 0.009366 0.009445 -0.84

1.44 0.009589 0.009583 0.05

1.6 0.008665 0.008797 -1.50

1.76 0.009216 0.009286 -0.75

1.92 0.009746 0.009557 1.98

2.08 0.009046 0.008936 1.23

Table 1 The numerical data from Figure 8 and the relative error.

simulation confirms well the theoretical result, with an average abso-
lute relative error of 4.75%. The biggest relative errors are at the
short TL, where the relative radiation losses are low, and hence more
difficult to reproduce accurately with the simulation. For example,
if we exclude the shortest TL length of 0.08λ from the comparison,
the average absolute relative error is 2.75%, or if we exclude the 2
shortest points of 0.08 and 0.16λ from the comparison, it drops to
1.87%.

3.2 Comparison with [3]

In 1923 Manneback [3] published a paper “Radiation from transmis-
sion lines” which calculated the power radiated by two thin wires
of length l (equivalent to our 2L), and separation d, in resonance,

having open terminations. The author considered the current

Im cos(knz) sin(ωnt) (30)

where kn = πn/l and ωn = ckn for odd n (as defined in Eq. 3 of
[3]). Note that the time dependence has been explicitly written in
[3] and the calculations have been done in time domain, but using a
fixed frequency, hence they are completely equivalent to our phasor
calculations. The result for the radiated power is given in Eq. 11 of
[3], rewritten here for convenience

Prad = 15Ω(kd)2I2m (31)

We compare this with our result (20). kl = nπ is in our notation
kL = nπ/2 hence the sinc function in Eq. (20) results 0. This res-

onant case implies I+ = I−, so the general current in Eq. (15)
reduces to

2I+ cos(kz) (32)

and Eq. (20) results in 120Ω(kd)2|I+|2.
The value Im in Eq. (30) is the amplitude of the current, i.e. the

RMS value times
√
2. We use RMS values (as mentioned in the

introduction) hence the equivalence between Eq. (30) and Eq. (32)
is by setting Im = 2

√
2|I+|, and using this equivalence, Eq. (20)

reduces exactly to Eq. (31).
To be mentioned that our results are general, covering all cases of

terminations, or any combination of waves, and we showed in this
subsection how our general result reduces correctly to the result for
a private case of resonance.

3.3 Comparison with [4]

In 1951 J. E. Storer and R. King, published the paper “Radiation
Resistance of a Two-Wire Line”, in which they calculated the radi-
ation resistance of a twin lead TL loaded by an arbitrary load, i.e.
carrying an arbitrary combination of forward and backward waves,
shown schematically in Figure 5. Defining the complex reflection

coefficient Γ ≡ ZL−Z0

ZL+Z0
, the relation between I+ and I− is given in

Eq. (21). The current at the generator side is:

I(−L) = I+ejkL + I−e−jkL, (33)

and the radiation resistance is defined by

rrad ≡ Prad/|I(−L)|2, (34)

where Prad is given in Eq. (20). Using Eqs. (21), (33) and (34) we
obtain

rrad = 60Ω(kd)2 [1− sinc(4kL)]
1 + |Γ|2

|1− Γe−4jkL|2 , (35)

which is identical to Eq. (5) in [4], after setting the ohmic attenu-

ation α to 0, and use the identity arctanh(x) = 1
2 ln 1+x

1−x and the
definition of the cosh function.

One remarks that rrad in Eq. (35) goes to infinity if |Γ| = 1 and
4kL− ∠Γ = 2πn (n integer). This lacuna will be fixed in Section 5.

In the private case of a matched TL, using the radiated power in

Eq. (12) divided by |I+|2, or alternatively setting Γ = 0 in Eq. (35)
results in:

rrad = 60Ω(kd)2 [1− sinc(4kL)] , (36)

which is identical to the case shown in Eq. (6) in [4], after setting the
attenuation α to 0.

3.4 Comparison with [5]

Another comparison is with Bingeman’s work from 2001 [5], in
which the method of moments (MoM) has been used to calculate
the radiation from two thin wires of diameter 2a = 5 mm, length
2L = 10 m and separated at a distance of d = 1 m. The character-
istic impedance is given by Eq. (25) (but given d ≫ a one may use
s = d, see Eq. (24)) and results in Z0 = 720Ω, as calculated at the
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beginning of [5]. In absence of other losses, the author derived the
radiated power as the difference between the power carried by the
TL and the power reaching the load.

The first calculation is the power radiated by a matched TL, fed by
a power of 1000 W, for frequencies f = 2, 5, 7, 10, 15 and 20 MHz.
For the power of 1000 W, the RMS value of the forward current to

set in Eq. (12) is |I+| =
√

1000/Z0 =1.1785 A, and we use k =
2πf/c for the above frequencies. The numerical results for this case
are given in Table 1 of [5], and we compare those results to ours, in
Figure 9 and Table 2. We see a good match for the high frequencies
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Fig. 9: Comparison between the radiated power for a matched line
from Table 1 of [5] with our results for a matched line in Eq. (12) for
different frequencies.

Frequency [MHz] [5] theoretical (Eq. 12) % error

2 0 0.0165 -100

5 1 0.5359 87

7 2 1.664 20

10 4 4.411 -9.32

15 8 8.225 -2.73

20 13 13.11 -0.84

Table 2 The numerical data from Figure 9 and the relative error.

(big electric delay), and it deteriorates at small electric delays. But
the result 0 for the frequency of 2 MHz is clearly incorrect, so we
may understand that the accuracy of the results in [5] is low at small
electric delays, for which the relative radiated power is small.

Another calculation in [5] is for a non matched TL, with end
loads RL=10, 50, 500Ω, 1, 5, 10, and 50 kΩ, all cases at frequency
10 MHz, carrying a net power of 1000 W. We compare those results
with the results of Eq. (20). First k = 2πf/c = 0.2094 [1/m] is
fixed, and we calculate for each load resistance RL

|Γ| =
∣∣∣∣
RL − Z0

RL + Z0

∣∣∣∣ , (37)

from which the forward power values for each case are given by

P+ =
P

1− |Γ|2 =
1000

1− |Γ|2 . (38)

The forward current values for each case are given by |I+| =√
P+/Z0 and the backward current values for each case are given

by |I−| = |Γ||I+|. Setting the values in Eq. (20), we compare the
results of [5] for the unmatched line at 10MHz (Table 2 in [5]),
with the results of Eq. (20) in Figure 10 and Table 3. The match
between the results is good, except for the first and last cases, in
which the radiated power is big and approaches the order of magni-
tude of the net power (1000 W). This may be due to the limitations of
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Fig. 10: Comparison between the radiated power for a non matched
line from Table 2 of [5] with our results for a non matched line in
Eq. (20) for different load resistances.

Load RL [Ω] [5] theoretical (Eq. 20) % error

10 140 158.83 -11.85

50 32 31.91 0.28

500 5 4.70 6.38

1k 5 4.65 7.53

5k 15 15.63 -4.03

10k 29 30.79 -5.81

50k 128 153.19 -16.44

Table 3 The numerical data from Figure 10 and the relative error.

the current theory to small losses that almost do not affect the basic
electromagnetic solution (see Introduction).

3.5 Comparison with [6]

In 2006 Nakamura et. al. published the paper “Radiation Character-
istics of a Transmission Line with a Side Plate” [6] which intends to
reduce radiation losses from a twin lead TL using a side plate. The
side plate is a perfect conductor put aside the transmission line, to
create opposite image currents, and hence reduce the radiation.

The authors first derived the radiation from a TL without the side
plate, obtaining an integral (Eq. 20 in [6]) which they computed
numerically. The numerical integration result is shown in Figure 6
of [6], where the solid line represents the free space case.

We compare our analytic result in Eq. (12), with the numerical
result shown in Figure 6 of [6]. First, I0 in [6] is a forward current,
and from Eq. (19) in [6], it is evident that they used RMS values.
They used I0 = 1A, hence we set |I+| = 1A in Eq. (12). 2h is the
distance between the conductors in [6], equivalent to d in this work,

and they used hλ = 0.1, therefore (kd)2 = (4πh/λ)2 = 1.5791 in
Eq. (12), so that the total radiated power for the case displayed in
Figure 6 of [6] is

Prad =60× 1× 1.5791 [1− sinc(4kL)] =

94.746[W ]

[
1− sinc

(
2L

λ
4π

)]
, (39)

and we wrote the argument of the sinc function in terms of 2L/λ, i.e.
the TL length in wavelengths. This result is displayed in Figure 11,
in which we show the radiated power as function of the TL length
in wavelengths. The authors did not supply the numerical data to
reproduce Figure 6 of [6], and we did not want to copy the figure
into this work for comparison, but we checked very carefully that
indeed our calculation shown in Figure 11 completely overlaps the
solid line in Figure 6 of [6].

We compare as well the radiation patterns obtained in [6] with
ours (Eq. 13) in Figure 12. We remark that D+(θ) is not sym-
metric around θ = π/2 in general (see Figure 4), but for the cases
kL = nπ/2 (integer n), i.e. the TL length is a multiple integer of
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Fig. 11: Recalculation of the solid line in Figure 6 of [6], using
Eq. (12).

TL length = 0.5λ
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Fig. 12: Radiation pattern D+ calculated from Eq. (13) for the cases
of TL lengths nλ/2, for n=1 to 4. They are identical to the parallel
cases shown in Figure 5, panel(a) of [6]. Note that the definitions of
the x and z axes are swapped in [6] compared to our definitions, we
therefore showed them in an orientation which makes the compari-
son easy (i.e. our z axis is oriented in the plots in the same direction
as their x axis). We remark that the pattern for the case 0.5λ is
quite similar to this of a dipole antenna, because a short TL behaves
similar to a small magnetic loop, i.e. a magnetic dipole.

half wavelength, displayed in Figure 12, D+(θ) is symmetric around

θ = π/2, because sin2(nπ/2 + x) = sin2(nπ/2− x) for any x.
The radiation patterns in Figure 12 are identical to the parallel cases
shown in Figure 5, panel(a) of [6].

It is worthwhile to remark that the radiation pattern (Eq. 13) does
not depend on the distance between the conductors d (or 2h in [6]),
hence the annotation of h/λ = 0.1 in Figure 5 of [6] is redundant,
and probably has been added to the caption because the authors
computed the radiation patterns numerically for h/λ = 0.1, without
deriving an analytic expression.

3.6 Comparison with [15, 16]

References [15, 16] analyse the radiation from a “U” shaped antenna
(see Figure 13) and showed that its radiation pattern is uniform.
Using Γ = −1 (shorted termination) and kL = π/4 the radiation
pattern in Eq. (22) is:

D = sin2
[
(π/2) sin2(θ/2)

]
+ sin2

[
(π/2) cos2(θ/2)

]
= 1.

(40)

Fig. 13: Transmission line of length λ/4, open at one termination,
and shorted at the other, represents a “U” shaped antenna.

Using (π/2) cos2(θ/2) = (π/2)− (π/2) sin2(θ/2) one easily
remarks that (40) is 1, describing uniform radiation, as mentioned
in [15, 16]. This does not contradict the “hairy-ball” theorem [23],
because this theorem states that any real tangential field must be 0
at least at one point on a sphere, and by real one means: having the
same phase everywhere.

And indeed the separate fields associated with I+ and I− (each
one “real” in the above sense) given in Eqs. (9) and (16) are 0 at
points θ = 0 and π respectively. From Eq. (21), the relation between
the forward and backward wave is I− = −jI+, and after summing
the fields by setting this relation into Eq. (18), the far magnetic field
is

H = G(r)2kdI+

[−ϕ̂ cosϕe−j(π/2) cos2(θ/2) + θ̂ sinϕej(π/2) cos
2(θ/2)], (41)

which has a constant amplitude everywhere, but a changing phase,
which cannot be factored out to get a “real” field. This complex field
manifests a linear polarization at θ = 0 and π, circular polarization
at θ = π/2 and ϕ multiple of π/4, and elliptic elsewhere, compare
with [15, 16].

4 Infinite and semi-infinite TL analysis

As we know, there are no infinite or semi-infinite TL in reality, but
the literature considers those kind of TL as limiting cases, and as we
shall see, the analysis of the infinite and semi-infinite TL supplies
an additional insight and validation of the results obtained in the
Section II, as shown in the following subsections.

Certainly those cases can be considered only in absence of other
losses, like ohmic or dielectric, for which infinite TL have infinite
losses. As one remarks, the radiation losses of finite TL reach an
asymptotic value for long TL, so that one may expect that infinite or
semi-infinite TL do not radiate an infinite power.

4.1 Infinite TL

For an infinite TL, carrying a forward wave, we set z1 = −L and
z2 = L in the result (A.12) and considering L → ∞ (i.e. for finite z
and ρ, L ≫ |z|, ρ) we obtain

Az =
µ0I

+

4π
d cosϕ

2e−jkz

ρ
. (42)

Certainly, we do not have in this case x directed currents, so we
obtain from Eq. (42):

H =
1

µ0
∇×A =

e−jkz

2π

I+d

ρ2
[−ρ̂ sinϕ+ ϕ̂ cosϕ] (43)

and

E =
1

jωǫ0
∇×H = η0

e−jkz

2π

I+d

ρ2
[ρ̂ cosϕ+ ϕ̂ sinϕ], (44)

which are the static H and E fields multiplied by the forward wave

propagation factor e−jkz .
We remark that in Appendix A we considered the far field (kρ ≫

1), so the fields in Eqs. (43) and (44) are correct far from the TL, and
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their diverging at ρ = 0 is an artefact of this far field approximation.
But even in the far field, writing them in spherical coordinates so that

ρ = r sin θ, the fields decay like 1/r2 and there is no “radiating”
term decaying like 1/r.

This is also evident from the Poynting vector:

S = E×H
∗ = η0

1

4π2

|I+|2d2
ρ4

ẑ, (45)

which is only in the z direction, representing the power carried by
the TL.

Given the fact that the fields in Eqs. (43) and (44) decay much
faster than radiating fields, hence are negligible relative to them far
from the TL, it is convenient to define a typical distance ρ0 from the
TL, so that

Static near field is dominant if ρ < ρ0

Radiation field is dominant if ρ > ρ0. (46)

There are no radiation fields in this subsection, but the relation (46)
will be referred to in the next subsection, analysing semi-infinite TL.

Another way of understanding ρ0 is by integrating the Poynting
vector to obtain the forward power P+

P+ =

∫∫∞
−∞

dxdyS · ẑ, (47)

and here one has to use the exact fields in the expression for S (not
the far fields in Eqs. (43) and (44)). To obtain P+ with a “reason-
able” required accuracy, one does not need to integrate to infinity,
but rather

P+ ≃
∫2π
0

dϕ

∫ρ0

0
dρ ρS · ẑ, (48)

so that ρ0 is the radial distance from the TL (in cylindrical coordi-
nates) within which the near fields are significant.

4.2 Semi-infinite TL

We analyse here a semi-infinite TL carrying a forward wave. The
TL can be either from z = −∞ to 0 (Figure 14) or from z = 0 to ∞
(Figure 15). We note that in both cases we have to consider also the
contribution of the x directed current at the termination at z = 0.

For the first case we set z1 = −L, z2 = 0 in Eq. (A.12) and
taking L → ∞ we obtain

Az RT =
µ0I

+

4π
d cosϕ

[
2e−jkz

ρ
− ρ

r − z

e−jkr

r

]
(49)

and from Eq. (A.14) for z2 = 0:

Ax RT = −µ0I
+d

e−jkr

4πr
, (50)

while for the second case we set z1 = 0, z2 = L in Eq. (A.12) and
taking L → ∞ we obtain

Az LT =
µ0I

+

4π
d cosϕ

[
ρ

r − z

e−jkr

r

]
(51)

and from Eq. (A.14) for z1 = 0:

Ax LT = µ0I
+d

e−jkr

4πr
, (52)

where the subscripts RT and LT mean “right terminated” and “left
terminated” TL, respectively. Looking at the RT configuration in
Eq. (49), we see that it includes also the near field expression of
the infinite TL from Eq. (42) for all z in spite of the fact that the
TL is in the region z < 0 and terminates at z = 0. This is explained

Fig. 14: Semi-infinite TL from z = −∞ to the centre of coordinates
at z = 0. The blue circle represents the wave front of the outgo-
ing spherical wave radiation in the second part of Eq. (49) and the
red wave fronts represent the near plane wave field in the first part
of Eq. (49). The near plane wave and spherical wave cancel each
other in the paraxial region z > 0 and ρ < ρ0, see Eq. (53). The
spherical wave is shown dashed blue in the cancelling region, which
occurs within a cone ∆θ = ρ0/r (dashed black line). The cone gets
narrower as the distance from the centre of coordinates r increases.

Fig. 15: Semi-infinite TL from the centre of coordinates at z = 0
to z = ∞. The blue circle represents the wave front of the outgo-
ing spherical wave radiation (Eq. (51)), but behaves in the paraxial
region z > 0 and ρ < ρ0, like the near plane wave in the first part of
Eq. (49), according to Eq. (53). Therefore, in this paraxial region the
spherical wave front (dashed blue) does not represent radiation, but
rather the near plane wave. Like in Figure 14, this paraxial region is
within the cone ∆θ = ρ0/r (dashed black line), which gets narrower
as the distance from the centre of coordinates r increases.

by the fact that for z > 0 and small ρ (typically ρ < ρ0, see (46)),

r ≈ z + ρ2

2z , so that r − z ≈ ρ2

2z , resulting in

ρ

r − z

e−jkr

r

∣∣∣∣∣ z>0
ρ<ρ0

≃ 2e−jkz

ρ
, (53)

which means that the spherical wave in the second part of Eq. (49)
describes radiation everywhere except in a cone around θ = 0 where
it is cancelled by the near plane wave in the first part of Eq. (49), see
Figure 14.

For the LT configuration the spherical wave in Eq. (51) represents
radiation except inside a cone around θ = 0, where it equals the near
plane wave in the first part of Eq. (49) (according to Eq. (53)), which
does not have radiating fields, see Figure 15.

So to calculate the radiated power P+
rad, one may either use the

second part of Eq. (49) together with Eq. (50), or Eq. (51) together
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with Eq. (52), excluding the paraxial region around θ = 0. This
exclusion is meaningless from the point of view of the calculation,
because as the distance from the centre of coordinates r increases
this region reduces to a singular point. The spherical potential vec-
tors for the RT and LT configurations differ only by sign, so both

yield the same result for P+
rad. Using the RT configuration, we

rewrite

Az = µ0F(z)(θ, ϕ)G(r), (54)

where

F(z)(θ, ϕ) = −I+d cosϕ
sin θ

1− cos θ
, (55)

is the directivity function. We calculate now the radiating electric
and magnetic fields, i.e. the part of the fields which decays like 1/r,
by approximating ∇ ≃ −jkr̂, obtaining

H(z) = jkF(z)(θ, ϕ) sin θG(r)ϕ̂, (56)

and E(z) = η0H(z) × r̂. Now we rewrite (50):

Ax = µ0F(x)(θ, ϕ)G(r), (57)

where the directivity function F(x) is

F(x)(θ, ϕ) = −I+d, (58)

The fields are H(x) = (−jkr̂)× (Axx̂)/µ0

H(x) = −jk(cos θ cosϕϕ̂+ sinϕθ̂)G(r)F(x), (59)

and E(x) = η0H(x) × r̂. Adding up the fields H(z) +H(x) we
obtain

H
+ = −jkG(r)I+d[ϕ̂ cosϕ− θ̂ sinϕ]. (60)

We named it H+, because it is the radiating field of a forward wave.
and

E
+ = η0H

+ × r̂ (61)

resulting in Poynting vector E+ ×H
+∗ :

S
+ = 30Ω

(kd)2r̂

4πr2
|I+|2, (62)

So that the total radiated power for a forward wave is

P+
rad =

∫2π
0

∫π
0
sin θdθdϕr2r̂ · S = 30Ω|I+|2(kd)2 (63)

It is clear from Eqs. (60) and (62) that this is an isotropic radiation.

Calculating D+ = 4πr2S+
r /P+

rad, one obtains

D+ = 1, (64)

so that we encounter again an isotropic radiation, but contrary to the
case shown in Section 3.6, here the polarization is linear. This is
possible because the radiation field is not the only field far from the
origin, and the near plane wave is also present, see Figures 14 and
15.

It is worthwhile at this point to understand the connection between
the radiation of a finite TL and a semi-infinite TL. In reality, a semi-
infinite TL is a very long TL, for which we analyse the termination
near to “our” side, while someone else analyses the termination near
to “his/her side”, as shown in Figure 16. Figure 17 shows schemat-
ically how the power radiated by a TL carrying a forward wave,
gradually changes as the TL length increases.

Till here we considered only a forward wave, and that is what one
usually considers for a semi-infinite TL from z = 0 to ∞ (LT case),
but for the RT case terminated by a non matched load, one can have
both forward and backward waves. The generalization for this case

Fig. 16: Very long TL, carrying a forward wave, for which one con-
siders each termination as the termination of a semi-infinite TL. Each
termination radiates the power 30Ω|I+|2(kd)2, so that the whole

TL radiates 60Ω|I+|2(kd)2, the asymptotic value in Eq. (12).

Fig. 17: A schematic diagram showing the connection between
the radiation of finite TL and semi-infinite TL carrying a for-
ward wave. The red lines are hand drawn and go around the
element considered for the calculation of the radiation, so their
shape is meaningless. Panel (a) shows a short TL radiating the

power 60Ω(kd)2|I+|2 [1− sinc(4kL)] according to Eq. (12).
Panel (b) shows a TL longer than several wavelengths, for which

| sinc(4kL)| ≪ 1, which practically radiates 60Ω(kd)2|I+|2, but
still considered a single radiating element. Panel (c) shows a very
long TL, like in Figure 16, which is analysed as two separate radi-
ating elements (as shown in Figures 14 and 15), each one radiating

30Ω(kd)2|I+|2, according to Eq. (63), in total the same as in panel
(b).

is done like in Section II-B, and the total radiated power in presence
of a forward and backward wave is

Prad = 30Ω(kd)2(|I+|2 + |I−|2), (65)

so that the interference between the waves does not contribute to the
radiated power, similarly to the case of a finite TL.

5 Radiation resistance

The radiation resistance has already been worked out in Section 3.3,

for comparison with [4]. It is defined by rrad = Prad/|I |2, Prad being
the total power radiated by the TL, and I the current at the generator
side (in Figure 5 it is I(−L)). The radiation resistance is given in
Eq. (35) and is identical to Eq. (5) in [4].

However, we remark that rrad in Eq. (35) goes to infinity if |Γ| =
1 and 4kL− ∠Γ = 2πn (n integer). For example if ZL in Figure 5
is ∞ (open TL), Γ = 1, so that I(L) = 0. If the length of the TL
2L is a multiple integer of λ/2, also the current at the generator
side I(−L) = 0. This is shown schematically in Figure 18, for n =
1. This case represents resonance (infinite VSWR) and current at

Fig. 18: Open ended transmission line, of length 2L = λ/2. The
current is 0 at both TL ends. The radiation resistance in Eq. (35) (or
Eq. (5) in [4]) fails in this case, resulting infinity.

IET Research Journals, pp. 1–12

c© The Institution of Engineering and Technology 2015 9



generator side 0. This of course does not mean that the generator
does not have to compensate for the radiated power, but rather a
fail of the small radiation losses approximation. In such case P+ =
|I+|2Z0 equals P− = |I−|2Z0 so that the net power carried by the

TL P = P+ − P− = 0, hence the radiated power Prad is infinitely
bigger than the net power P transferred by the TL.

We derive here a more robust radiation resistance, valid for
any TL configuration. We still assume P+

rad ≪ P+ (small relative
losses), but the total radiated power Prad is allowed to be bigger than
the net power P . Given the fact that the interference between the for-
ward and backward waves does not contribute to the radiated power
(see (Eq. 20)), we may consider the separate loss of the forward or
backward wave.

The relation P+
rad/P

+ in Eq. (14), equal also to P−
rad/P

−,

is written as if P+ would be a constant, but P+ is only
approximately constant for P+

rad ≪ P+. Looking at the config-
uration in Figure 5, by conservation of energy, the power radi-

ated by a forward wave P+
rad must be the difference P+(−L)−

P+(L), which is small relative to the individual values of

P+(−L) and P+(L). We may therefore express P+(L) =
P+(−L)− P+

rad, but considering P+
rad ≪ P+, this may be writ-

ten as P+(L) = P+(−L)
[
1− P+

rad/P
+
]
, or more conveniently

P+(L) = P+(−L) exp(−P+
rad/P

+).

The small decay factor P+
rad/P

+ (or P−
rad/P

− for the backward
wave) is minus twice the imaginary part of the TL electrical length
2Im{Θ} according to Eq. (29), so we may describe the dynamics of

P+ or P− along the TL

P+(L) = P+(−L)e2Im{Θ}
(66)

P−(−L) = P−(L)e2Im{Θ}
(67)

where Im{Θ} < 0 always. Given P± are proportional to |I±|2
respectively, the forward and backward currents decay according to
Im{Θ}, in addition to their accumulated phase, so we express

I+(L) = I+(−L)e−j2kLeIm{Θ}, (68)

I−(−L) = I−(L)e−j2kLeIm{Θ}, (69)

At the load side I−(L) = −ΓI+(L), so using Eqs. (68) and (69),

we express the total current near the generator I(−L) = I+(−L) +
I−(−L):

I(−L) = I+(−L)
[
1− Γe−j4kLe2Im{Θ}

]
(70)

which for |Im{Θ}| ≪ 1 can be written:

I(−L) = I+(−L)
[
1− Γe−j4kL(1 + 2Im{Θ})

]
(71)

Using Eqs. (34), (20) and the relation −2Im{Θ} = P+
rad/P

+ from
Eq. (14) we obtain a more accurate, explicit expression for the
radiation resistance

rrad =
60Ω(kd)2 [1− sinc(4kL)] (1 + |Γ|2)

|1− Γe−4jkL{1− (60Ω/Z0)(kd)2 [1− sinc(4kL)]}|2 .
(72)

If Γe−4jkL is far from 1, the last term in the denominator is negli-
gible, and one recovers the approximate Eq. (35). On the other hand

if Γe−4jkL = 1 (resonance), one obtains

rrad =
2Z2

0

60Ω(kd)2 [1− sinc(4kL)]
. (73)

which is big, because kd ≪ 1, but not infinite. For the special case
described in Figure 18, Γ = 1 and 4kL = 2π, the sinc function is 0,

so that rrad reduces to 2Z2
0/[60 Ω (kd)2].

6 Conclusions

We derived in this work a general radiation losses model for two-
conductors transmission lines (TL) in free space. We considered any
combination of forward and backward waves (i.e. any termination),
and also any TL length, analysing infinite, semi-infinite and finite
TL.

One important finding is that the interference between forward
and backward waves does not contribute to the radiated power
(Eq. (20)), which has been also validated by the comparisons with
[3–5, 15, 16], in the sense that those comparisons would have failed
if Eq. (20) were incorrect.

This property allowed us to consider the separate losses for
the forward an backward wave for the calculation of the radiation
resistance in Section 5. This radiation resistance reduces correctly
far from resonance to this calculated in [4] (Eq. 35), but handles
correctly the resonant case.

Another novelty of this work is the analysis of the semi-infinite
TL which clearly shows that the radiation from TL is mainly a termi-
nation effect. We found an isotropic radiation from the semi-infinite
TL, which is possible due to the fact that the radiation fields are not
the only far fields, as shown in Figures 14 and 15. The semi-infinite
TL radiation results are consistent with finite TL results, so that a
very long TL can be regarded as two semi-infinite TLs, as shown in
Figure 17.

Although previous works [3–7] considered exclusively the twin
lead cross section, the formalism developed in this work is valid for
any small electric size cross section. We showed this in Section 3.1
by successfully comparing the analytic results with simulation of
ANSYS-HFSS commercial software for a parallel cylinders cross
section (Figure 6), in which the radius was not small relative to the
distance between the centres of the cylinders. Appendix B explains
how to calculate the parameters needed to derive the radiation for
any TL cross section.

Some comments on the generalization of this research for TL in
dielectric insulator. The case of TL in dielectric insulator is solvable
analytically, but much more involved than the free space case. The
fact that the TL propagation wavenumber β is different form the
free space wavenumber k by itself complicates the mathematics, but
in addition it comes out that one needs to consider in this case also
polarization currents, which further complicate the results. Radiation
from TL in dielectric insulator will be published separately, as part
two of this study.
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8 Appendices

8.1 Appendix A: Far vector potential of separated
two-conductors transmission line in twin lead
representation

We show in this appendix that for the purpose of calculating the
far fields from a two ideal conductor transmission line (TL) in free
space, having a well defined separation between the conductors, as
shown in Figure 1, one can use an equivalent twin lead, provided the
separation is much smaller than the wavelength.

For simplicity we use a forward wave (propagating like e−jkz),
but the same conclusion is valid for a combination of waves. In the
far field the z directed magnetic potential vector Az is expressed as

Az = µ0

∫z2
z1

dz′
∮
dcKz(c)e

−jkz′

G(R) (A.1)

where the dz′ integral goes on the whole length of the TL, and

G(s) = e−jks

4πs is the 3D Green’s function, Kz is the surface cur-
rent distribution as function of the contour parameter c (i.e. c1 and
c2, see Figure 1) which is known from electrostatic considerations,
and R is the distance from the integration point on the contour of the
conductors to the observer:

R =
√

(x− x′(c))2 + (y − y′(c))2 + (z − z′)2. (A.2)

Changing variable z′′ = z′ − z in Eq. (A.1), one obtains

Az = µ0e
−jkz

∫z2−z

z1−z
dz′′

∮
dcKz(c)e

−jkz′′

G(R), (A.3)

redefining R =
√

(x− x′(c))2 + (y − y′(c))2 + (z′′)2. For a far

observer, at distance ρ ≡
√

x2 + y2 from the TL, so that ρ is much
bigger than the transverse dimensions of the TL one approximates R
in cylindrical coordinates as

R ≃ r − ρ

r

[
x′(c) cosϕ+ y′(c) sinϕ

]
, (A.4)

where r(z′′) ≡
√

(z′′)2 + ρ2. We keep for now everything in cylin-
drical coordinates, to be able to handle infinite or semi-infinite lines.

Using this in Eq. (A.3), one obtains

Az =µ0e
−jkz

∫z2−z

z1−z
dz′′

e−jk[z′′+r(z′′)]

4πr(z′′)∮
dcKz(c)e

jk(ρ/r)[x′(c) cosϕ+y′(c) sinϕ]. (A.5)

We consider the higher modes to be in deep cutoff, so that
kx′(c), ky′(c) ≪ 1, hence

Az ≈µ0e
−jkz

∫z2−z

z1−z
dz′′

e−jk[z′′+r(z′′)]

4πr(z′′)

∮
dcKz(c)

{
1 + jk(ρ/r)[x′(c) cosϕ+ y′(c) sinϕ]

}
. (A.6)

Separating the contour integral
∮
dc =

∮
dc1 +

∮
dc2, where c1,2

are the contours of the “upper” and “lower” conductors respectively
(see Figure 1), and using∮

dc1Kz(c1) = −
∮
dc2Kz(c2) = I+ (A.7)

so that the integral on each surface current distribution results in
the total current, which we call I+, because it represents a forward
wave. Given that for a two-conductors TL there is only one (differ-
ential) TEM mode, this current is equal, but with opposite signs on
the conductors. We may define the 2D vector ρ(c) ≡ (x′(c), y′(c)),
from which one defines the vector distance between the centre of the
surface current distributions

d ≡
[∮

dc1Kz(c1)ρ(c1) +

∮
dc2Kz(c2)ρ(c2)

]
/I+. (A.8)

From this point, the original cross section is relevant only for calcu-
lating the equivalent separation vector d in the twin lead represen-
tation, and the remaining calculation bases solely on this twin lead
representation. In appendix B we show examples for the calculation
of the twin lead equivalent for given cross sections.

Using the twin lead representation, Eq. (A.6) may be rewritten

Az =µ0e
−jkzI+jk[dx cosϕ+ dy sinϕ]

∫z2−z

z1−z
dz′′

e−jk[z′′+r(z′′)]

4πr(z′′)

ρ

r(z′′)
, (A.9)

where dx and the dy are the x and y components of the vector d.
This represents a twin lead, as shown in Figure 2, and is actually a
2D dipole approximation of the TL. Without loss of generality, one
redefines the x axis to be aligned with d, so that dx = d and dy = 0,
obtaining

Az = µ0e
−jkzI+jkd cosϕ

∫z2−z

z1−z
dz′′

e−jk[z′′+r(z′′)]

4πr

ρ

r(z′′)
,

(A.10)

which is equivalent of having a current I+e−jkz confined on the
conductor at x = d/2 and the same current confined on the conduc-
tor x = −d/2 but defined in the opposite direction, representing a
twin lead (see Figure 2). We are interested in radiation, so we require
the observer to be many wavelengths far from the TL: kρ ≫ 1 and
kr ≫ 1, so that Eq. (A.10) may be further simplified to

Az = −µ0I
+e−jkzd cosϕ

4π

∂

∂ρ

∫z2−z

z1−z
dz′′

e−jk[z′′+r(z′′)]

r(z′′)
.

(A.11)
The dz′′ integral results in the exponential integral function Ei as
follows

Az =− µ0I
+e−jkzd cosϕ

4π

∂

∂ρ
Ei

(
−jk

[
z′′ +

√
(z′′)2 + ρ2

])∣∣∣∣
z2−z

z1−z

, (A.12)

where the Ei function satisfies dEi(s)/ds = es/s.
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The twin lead geometry also allows us to use simple models for
the termination currents in the x direction (see Figure 2), defining
the x component of the magnetic vector potential, calculated as:

Ax 1,2 = ±µ0I
+
∫d/2
−d/2

dx′e−jkz1,2G(R1,2), (A.13)

where the indices 1,2 denote the contributions from the termina-
tion currents at z1,2, respectively, see (see Figure 2). The distances
R1,2 of the far observer from the terminations are expressed in

spherical coordinates: R1,2 ≃ r − z1,2 cos θ − x′ sin θ cosϕ, and
the integral (A.13), carried out for kd ≪ 1 results in

Ax 1,2 = ±µ0I
+dG(r)e−jkz1,2(1−cos θ)

(A.14)

8.2 Appendix B: Computation of radiation parameters

To calculate the power radiated from a TL, of any cross section,
one needs the separation vector d, defined in Figure 1, calculated
from Eq. (A.8). If one needs the normalized radiation due to a for-
ward wave, one also needs to know the characteristic impedance Z0.
Those are obtained with the aid of the ANSYS 2D “Maxwell” sim-
ulation, from an electrostatic analysis. We ran the 2D “Maxwell”
simulation on two cross sections shown in Figure B.1. It is to be

Fig. B.1: Panel (a) shows a cross section of circular shaped con-
ductors and panel (b) shows a cross section of rectangular shaped
conductors. The sizes are in units of cm. The y axis is horizontal, and
the x axis for each cross section is the symmetry axis. The red points
show the current images which define the twin lead representation,
and are referred further on.

mentioned that we know the analytic solution for the cross section in
panel (a) from image theory [10], so that it can be used as a test for
the quality of the numerical simulation. The magnitude of the elec-
tric fields measured for those cross sections is shown in Figure B.2.

Fig. B.2: The magnitude of the electric field, the hottest colour rep-
resenting high field and coldest colour low (close to 0) field, for the
circular shaped conductors cross section in the left panel and for the
rectangular shaped conductors in the right panel. The red scars in the
middle of the plots show the coordinate’s origin.

We remark that the surface currents, which are proportional to the
(tangential) magnetic field on the conductors are also proportional
to the (normal) electric field on the conductors. Given the surface
currents Kz(c1) > 0 and Kz(c2) < 0 in Eq. (A.8), and using the
field intensity which is positive, E(c1) is proportional to Kz(c1)
and E(c2) is proportional to −Kz(c2), we may calculate the sepa-
ration vector d, using Eqs. (A.7) and (A.8), after replacing Kz(c1)
by E(c1) and Kz(c2) by −E(c2) as follows

d =

∮
dc1E(c1)ρ(c1)−

∮
dc2E(c2)ρ(c2)∮

dc1E(c1)
. (B.1)

For the cross sections in Figure B.1, the “positive” and “negative”
conductors are symmetric, so that a given location vector ρ(c2) on
the negative conductor, is the minus of the corresponding location
vector ρ(c1) on the positive conductor, and by symmetry the magni-
tudes of the electric fields E(c1) = E(c2), so that we may drop the
second integral in the numerator of Eq. (B.1), and multiply the result
by 2. Also by symmetry the y component of d comes out 0, so that
d = |d| = dx represents the distance between the “image” currents
in the twin lead model, and we obtained d = 2.54 cm for the circu-
lar cross section (compares well with Eq. (24)), and d = 2.91 cm for
the rectangular cross section, as shown in Figure B.1.

We obtained from the 2D “Maxwell” simulation also the per unit
length capacitances, which came out 31.5 pF/m and 33.51 pF/m for
the circular and rectangular cross sections, respectively. The char-
acteristic impedance Z0 is calculated by 1/(Cc), where c is the
velocity of light in vacuum and C is the per unit length capacitance,
and come out 105.8Ω (compares well with Eq. (25)) and 99.51Ω for
the circular and rectangular cross sections, respectively.

The procedure described in this section can be done for any cross
section, and it supplies all the values needed to calculate the normal-
ized radiation in Eq. (14). Its accuracy can be found by comparing
the values obtained for d and Z0 for the circular cross section, with
the theoretical values obtained from image theory and they fit with
an inaccuracy of less than 0.5%.
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