
IET Research Journals

Radiation from Quasi-TEM insulated
transmission lines

ISSN 1751-8644
doi: 0000000000
www.ietdl.org

Reuven Ianconescu1∗, Vladimir Vulfin2

1 Shenkar College of Engineering and Design, Ramat Gan, Israel
2 Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
* E-mail: riancon@gmail.com

Abstract: We develop in this work a radiation losses model for Quasi-TEM two-conductors transmission lines insulated in a
dielectric material. The analysis is based on Maxwell equations and is exact in the Quasi-TEM regime, which is satisfied by the
condition of small electric cross section. All the analytic results are validated by comparison with ANSYS-HFSS simulation results
and previous published works.

1 Introduction

We presented in [3] (and previous conferences [1, 2]) an analysis
of radiation losses from two-conductors transmission lines (TL) in
free space, in which we analysed semi-infinite as well as finite TL,
and showed that the radiation from TL is essentially a termination
phenomenon. We found that the power radiated by a finite TL, car-
rying a forward currentI+, tends to the constant60Ω (kd)2|I+|2
(k being the wavenumber andd the effective separation between
the conductors) when the TL length tends to infinity (in practice
overpasses several wavelengths). This constant is twice the power
radiated by a semi-infinite TL, showing that a very long TL canbe
regarded as two separate semi-infinite TL, see [3].

The purpose of this work is to generalise the results in [3]
to Quasi-TEM two-conductors TL isolated by a lossless dielectric
material. The validity of the results lies in Quasi-TEM regime (see
Appendix A), which is satisfied by the condition of small electric
cross section (the same condition used in [3]). Also, it should be
mentioned that the results of this work depend entierly on physical
sizesrelative to the wavelength, and therefore are expected to be
accurate for any frequency where the Quasi-TEM approach is valid.

We remark that power loss from TL is also affected by nearby
objects interfering with the fields, line bends, irregularities, etc. This
is certainly true, but those affectnot only the radiation,but also
the basic, “ideal” TL model in what concerns the characteristic
impedance, the propagation wave number, etc. Like in [3] (and ref-
erences therein) those non-ideal phenomena arenot consideredin
the current work, which derives the radiation-losses for ideal, non
bending, fixed cross section TL.

The case of TL in dielectric insulator is much more compli-
cated than the free space case. The fact that the TL propagation
wavenumberβ is different from the free space wavenumberk by
itself complicates the mathematics (see [4]), but in addition it comes
out that one needs to consider in this case polarisation currents in
addition to free currents. Hence, to define a generic algorithm for
determining the radiation losses for two-conductors TL isolated in
dielectric material, one needs a generic specification for the polar-
isation currents. Given polarisation current elements aresummed
vectorially (see red lines in Figure 1), so that elements perpendic-
ular to the vector sum do not contribute, one has to define an average
relative dielectric permittivity, namedǫp (the subscript “p” stands
for polarisation), which is smaller or equal to the known equivalent
relative dielectric permittivityǫeq [5–10]

There are three appendices in this work. Appendix A explains
some basics on Quasi-TEM cross section behaviour. We discuss the
propagation wavenumberβ, the equivalent relative dielectric permit-
tivity ǫeq and their connection to the capacitance per length unit

Fig. 1: A general cross section of two conductors insulated in a
dielectric. The grey regions are the ideal conductors andc1,2 are the
contours of those conductors. The dielectric (yellow), is of uniform
relative dielectric permittivityǫr. Under excitation the dielectric
insulator develops polarisation currents. The transversepolarisation
current density (red arrows) isjωǫ0(ǫr − 1)ET , ω being the angu-
lar frequency andET the transverse component of the electric field.
The longitudinal (z directed) polarisation current density (green) is
jωǫ0(ǫr − 1)Ez , Ez being thez component of the electric field.
C and the characteristic impedanceZ0 (which are strictly speak-
ing well defined only for “pure” TEM). In Appendix B we develop
the far potential vector, and similarly to [3], we show that one can
represent any two-conductors TL isolated in dielectric material, by
a twin lead (see Figure 2), provided the electrical size of the cross
section is small. As mentioned before, we calculate in the appendix
also the contribution of the polarisation currents, and those require
a generic definition of an average relative dielectric permittivity, ǫp.
The connection betweenǫp andǫeq and some more insight into their
physical meaning is discussed in Appendix C.

The main text is organised as follows. In section II we calcu-
late the power radiated by a TL carrying a forward waveI(z) =
I+e−jβz (matched TL), for a general cross section of the TL,
as shown in Figure 1. We base the calculations on the results of
Appendix B, in which we show (similarly to [3]) that the radiation
from a TL of any cross section of small electrical dimensionscan be
formulated in terms of a twin lead analogue as shown in Figure2, but
unlike in the free space case, this twin lead includes also a sheet of
polarisation surface current. After deriving the radiatedpower and
the radiation pattern for the matched TL, we show the limit ofthe
free space case and the limit of a long TL, and how this connects to a
semi-infinite TL. The results for the matched TL are generalised for
any combination of wavesI(z) = I+e−jβz + I−ejβz .
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Fig. 2: Twin lead equivalent of TL insulated in dielectric mate-
rial. The free TL currents in the conductors atx = ±d/2 are
±I+e−jβz respectively, and the free termination currents in the
conductors atz = ∓L are ±I+e±jβL respectively, similarly to
Figure 2 in [3], onlyk replaced byβ. The main difference with
respect to [3] are the polarisation currents (red arrows), which are
represented as surface currents on the planey = 0. Their value is
Jp = −bx ǫp−1

ǫp
jβI+δ(y), see Eqs. (B.33)-(B.35), and the physical

meaning ofǫp is explained in Appendix C.

In section III, we validate the theoretical results obtained in
section II, by comparing them with a previous work dealing with
radiation from TL [11]. This work was concerned with reducing radi-
ation losses by using a side plate (mirror) to create opposite image
currents, and they considered the free space case, and also TL inside
dielectric, but ignored polarisation currents. Reducing our configura-
tion to the assumptions in [11], shows a very good comparisonwith
these results. We then compare our theoretical results withANSYS-
HFSS commercial software simulation results for some crosssection
examples. The work is ended by some concluding remarks.

Note: through this work, we use RMS values, hence there is no
1/2 in the expressions for power. Partial derivatives are abbreviated,
like for example derivative with respect to time∂∂t ≡ ∂t.

2 Radiated power

2.1 Matched TL

We calculate in this section the power radiated from a matched gen-
eral Quasi-TEM two-conductors TL insulated in a dielectricmaterial
of any cross section, as shown in Figure 1, carrying a forwardwave
described by the current

I(z) = I+e−jβz , (1)

where−L ≤ z ≤ L. As shown in Appendix B (similarly to [3]),
for the purpose of calculating far fields, any general cross section,
can be explored by its equivalent twin lead representation shown in
Figure 2.

The free currents in the TL line conductors and longitudinal
(z directed) polarisation currents define the separation distanced
between the conductors in the twin lead representation (Eq.B.29),
and define thez component of the far potential vector computed
in Eq. (B.38). The free termination currents of the TL and the
transverse polarisation current density, represented by asheet ofx
directed surface polarisation current densityJs p in the twin lead
representation define thex directed component of the far potential
vector computed in Eq. (B.43).

We remark that the results obtained in Appendix B have been cal-
culated in spherical coordinates, where the distance from the originr
satisfieskr ≫ kL, 2L being the length of the TL, see Figure 2. This
means that all the following results, based on Appendix B, include
the effect of the terminations, no matter how bigkL is. Hence, the
limit kL → ∞, does not describe an infinite TL, but rather a finite
TL of big electric length,kL ≫ 1. This limit will be examined along
this section.

Using the results from Appendix B, we calculate here the total
radiated power from the TL. Starting with the contribution of the
longitudinal currents, we rewrite Eq. (B.38) in this form

Az = µ0G(r)F(z)(θ, ϕ) (2)

where

F(z)(θ, ϕ) ≡ jk2LdI+ sinc[kL(cos θ − neq)] sin θ cos ϕ, (3)

and the subscript(z) denotes the contribution from thez directed
currents, andF(z) is the directivity associated with this contribution.
To obtain the far fields (those decaying like1/r), the∇ operator is
approximated by−jkbr and one obtains:

H(z) =
1

µ0
∇ × (Azbz) = jkG(r)F(z)(θ, ϕ) sin θ bϕ (4)

and the electric field associated with it isE(z) = η0H(z) × br.
To calculate the contribution of the transverse (x directed cur-

rents), we rewrite Eq. (B.43) in this form

Ax = µ0G(r)F(x)(θ, ϕ) (5)

where

F(x) ≡ −jkI+d2L sinc[kL(cos θ − neq)](cos θ − neq/ǫp) (6)

and the subscript(x) denotes the contribution from thex directed
currents, andF(x) is the directivity associated with this contribution.

The parameterǫp comes from defining the polarisation currents
as(ǫeq − 1)/ǫeq times the displacement current, and as explained in
Appendix C, the ratio (ǫp−1)/ǫp

(ǫeq−1)/ǫeq
represents the average projection

factor of the polarisation current elements on the main (x) axis - the
axis with respect to which the twin lead model has been defined(see
Figure 2). In cross sections having a transverse E field mainly in the
x direction the projection factor is close to 1, henceǫp ≃ ǫeq , and in
the opposite extreme caseǫp ≃ 1 (negligible polarisation currents),
so that1 ≤ ǫp ≤ ǫeq = n2

eq . As evident from Eq. (6),ǫp always
appears in the rationeq/ǫp, we therefore use the definition

n ≡ neq/ǫp, (7)

so that

1/neq ≤ n ≤ neq . (8)

We may therefore usen = na
eq , so that the powera satisfies−1 ≤

a ≤ 1, but as explained in Appendix C, the equality casea = 1 is
not physical, so it is consideredonly in the context of “ignoring the
transverse polarisation”.

To obtain the far fields, we useH(x) = 1
µ0

∇ × (Axbx) and the

identitybr× bx = cos θ cos ϕ bϕ + sin ϕbθ, getting

H(x) = −jk[cos θ cos ϕ bϕ + sin ϕbθ]G(r)F(x) (9)

and the electric field associated with it isE(x) = η0H(x) × br.
Now summing Eqs. (4) with (9) we obtain the total far magnetic

field

H
+ = − k2G(r)I+d2L sinc[kL(cos θ − neq)]

[bθ sin ϕ(cos θ − n) + bϕ cos ϕ(1 − n cos θ)] (10)

and the electric fieldE+ = η0H
+ × br. We use from here the

superscript “+”, because those results are for a forward wave. The
Poynting vector is

S+ = η0|H+|2 =
η0k4|I+|2d2L2

4π2r2 sinc2[kL(cos θ − neq)]

[sin2 ϕ(cos θ − n)2 + cos2 ϕ(1 − n cos θ)2],
(11)

and the total radiated power is calculated via

P+
rad =

∫2π

0

∫π

0
sin θdθdϕr2S+. (12)

We remark that
∫2π
0 dϕ sin2 ϕ =

∫2π
0 dϕ cos2 ϕ = π, so that the

radiated power is given by the single integral inθ. After changing
variable:y = − cos θ, one obtains

P+
rad =60 Ω(kd)2|I+|2

∫1

−1
dy (kL)2 sinc2[kL(neq + y)]

[(1 + n2)(1 + y2)/2 + 2ny] (13)
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The integral is carried out analytically, resulting in an expression
which is very big, and therefore we introduce some definitions. We
define the following function arguments:

a+ ≡ 2kL(neq + 1) ; a− ≡ 2kL(neq − 1), (14)

Furthermore, we define

Q ≡ cos(a+)

a+
− cos(a−)

a−
+ Si(a+) − Si(a−) (15)

W ≡ ln
neq + 1

neq − 1
− [Ci(a+) − Ci(a−)] (16)

whereSi andCi are the sine and cosine integral functions respec-
tively. The solution of the(1 + y2) part in the integral in Eq. (13),
without the prefactor(1 + n2)/2, is given by the functionZ1:

Z1(kL, neq) =
2n2

eq

n2
eq − 1

+ kL(n2
eq + 1)Q − neqW−

sin(a+) − sin(a−)

4kL
(17)

and the solution of they part in the integral in Eq. (13), without the
prefactor2n, is given by the functionZ2 as follows:

Z2(kL, neq) =
−neq

n2
eq − 1

− kLneqQ + W/2. (18)

So the solution of the whole integral is described by the function
Z(kL, neq , n)

Z(kL, neq , n) =
1 + n2

2
Z1 + 2nZ2. (19)

The behaviour ofZ(kL, neq , n) as function of the TL lengthl ≡ 2L
in units of the free space wavelengthλ = 2π/k is shown in Fig-
ures 3-5 and referred to hereinafter. Looking at the figures,we under-
stand that asneq is bigger, the functionZ(kL, neq , n) decreases,
while for a givenneq , bigger transverse polarisation currents (bigger
ǫp, hence smallern), further decreaseZ(kL, neq , n).

From (13) and (19), the expression for the radiated power is

P+
rad = 60Ω|I+|2(kd)2Z(kL, neq , n) (20)

The radiation pattern function is calculated from the radial point-
ing vector (Eq. (11)) and the total power in Eq. (20), usingD+ =
4πr2S+/P+

rad which comes out

D+(θ, ϕ) = 2 sin2[kL(cos θ − neq)]

sin2 ϕ(cos θ − n)2 + cos2 ϕ(1 − n cos θ)2

Z(kL, neq , n)(cos θ − neq)2
(21)

and the radiated power relative to the forward wave propagating
power (P+ = |I+|2Z0) is given by

P+
rad

P+ =
60 Ω

Z0
(kd)2Z(kL, neq , n), (22)

The expressions for the radiated power and radiation pattern are
complicated (certainly relative to the free space case [3])and it
would be of interest to compare them to the free space case and
determine some limits, in the following subsections.

2.1.1 The free space limitIn this limit neq = 1, and alson = 1,
according to Eq. (8). Soa+ = 4kL, a− = 0 andZ in Eq. (19) is
Z1 + 2Z2, resulting in

Z =
2n2

eq

n2
eq − 1

+ 2kLQ − W − sin(4kL)

4kL
+ 2

−neq

n2
eq − 1

− 2kLQ + W,

(23)
We note that

2
n2

eq − neq

n2
eq − 1

= 2
neq(neq − 1)

(neq − 1)(neq + 1)
→ 1 (24)

for neq → 1, so we recover the free space formula forZ

Z(kL, neq = 1, n = 1) = 1 − sinc(4kL), (25)
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Fig. 3: Z from Eq. (19) as function of the TL line length in units
of wavelengths, forn = neq , i.e.ǫp = 1 and for values ofneq = 1,
1.25 and 2. The asymptotic values for a long TL are 1, 0.79 and 0.704
respectively (see Eq. 29), and those asymptotic values tends to 2/3,
for big neq , according to the casen = neq in Eq. (32).
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Fig. 4: Same as Figure 3, only forn = 1, i.e.ǫp = neq . The asymp-
totic values for a long TL are 1, 0.56 and 0.23 forneq = 1, 1.25 and
2, respectively (see Eq. 29), and those asymptotic values tends to 0,
for big neq , according to the casen 6= neq in Eq. (32).
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Fig. 5: Same as Figure 3, only forn = 1/neq , i.e.ǫp = ǫeq = n2
eq .

The asymptotic values for a long TL are 1, 0.5 and 0.18 forneq = 1,
1.25 and 2, respectively (see Eq. 29), and those asymptotic values
tends to 0, for bigneq , according to the casen 6= neq in Eq. (32).

shown in blue colour in Figures 3-5, see [3]. The limit of the
radiation pattern is

D+(θ, ϕ) = 2
sin2[kL(1 − cos θ)]

(1 − sinc(4kL))
, (26)

which remains only a function ofθ, recovering Eq. (12) in [3].
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2.1.2 The limit of a long TLIn the free space case the limit for a
long TL (kL → ∞) is simplyZ = 1. In our case this limit depends
on neq and n. For kL → ∞, a+ and a− both go to∞. The Ci
function goes to 0 for large argument, therefore Eq. (16) reduces to

W → ln
neq + 1

neq − 1
, (27)

The functionQ → 0, but here one has to be careful, because we
need the limit ofkLQ in Eqs. (17) and (18). TheSi function for
large argument behaves like:

Si(x) =
π

2
− cos x

x

∞X

k=0
k even

k!

xk
− sin x

x

∞X

k=1
k odd

k!

xk
(28)

and from here it is easy to find thatQ decreases faster than(kL)−1,
hencekLQ → 0. Also [sin(a+) − sin(a−)]/(4kL) → 0 for kL →
∞, we therefore obtain after some algebra the following limitfor Z:

Z(kL → ∞, neq , n) =
neq

n2
eq − 1

h
(1 + n2)neq − 2n

i
+

h
n − neq(1 + n2)/2

i
ln

neq + 1

neq − 1
(29)

Those limits can be calculated for the cases shown in Figures3-5
and yield 1, 0.79 and 0.704 forn = neq (Figure 3), 1, 0.56 and 0.23
for n = 1 (Figure 4) and 1, 0.5 and 0.18 forn = 1/neq (Figure 5),
for the values ofneq = 1, 1.25 and 2, respectively.

As shown in [3], this limit represents the radiation of a longTL
carrying a forward wave, so that:

P+
rad (long TL) = 60 Ω|I+|2(kd)2Z(kL → ∞, neq , n). (30)

which also corresponds to twice the power radiated from a semi-
infinite TL. This means that the power radiated by a semi-infinite
TL carrying a forward wave is

P+
rad (semi-infinite)= 30Ω|I+|2(kd)2Z(kL → ∞, neq , n), (31)

see Figure 9 in [3].

2.1.3 The limit of big relative dielectric permittivity, for long
TLThis limit is discussed in the context of a long TL, so the limit of
(29) forneq → ∞ depends onn, as follows:

Z(kL → ∞, neq → ∞, n) =


2/3 n = neq

0 1/neq ≤ n < neq
,

(32)
so that there is a singular case of “ignoring the transverse polarisa-
tion”, for which the limit is 2/3, as shown in Figure 3, and forany
practical case the limit is 0, meaning that the radiated power vanishes
for strong relative permittivity of the dielectric insulator neq → ∞
(see Figures 4 and 5).

2.2 Generalisation for non matched TL

We generalise here the result (20) obtained for the losses ofa finite
TL carrying a forward wave to any combination of waves, as follows:

I(z) = I+e−jkz + I−ejkz (33)

whereI+ is the forward wave phasor current, as used in the previous
subsection andI− is the backward wave phasor current, still defined
to the right in the “upper” line in Figure 2.

The solution for the general current is obtained as superposition
of the solutions for the fields generated byI+e−jkz andI−ejkz .
The solution for the backward moving waveI−ejkz , can be found
by first solving for areversedz axis in Figure 2, i.e. az axis going
to the left, and replacing in the solution (10)I+ → −I−, so one
obtains

H
− = − k2G(r)(−I−)d2L sinc[kL(cos θ′ − neq)]

[bθ′
sin ϕ′(cos θ′ − n) + bϕ′ cos ϕ′(1 − cos θ′ n)] (34)

whereθ′ and ϕ′ are the spherical angles for the reversedz axis.
Now to express the solution for the backward wave in the original
coordinates, defined by the right directedz axis, one has to replace:
θ′ = π − θ, ϕ′ = −ϕ, and therefore alsobθ′

= −bθ and bϕ′ = − bϕ,

and sum (10) with (34), obtainingH = H+ + H−

H = −k2G(r)2dL{bθ[I+A− + I−A+] + bϕ[I+B− + I−B+]},
(35)

where we used the abbreviations:

A± = sinc[kL(cos θ ± neq)](cos θ ± n) sin ϕ

B± = sinc[kL(cos θ ± neq)](1 ± n cos θ) cos ϕ, (36)

from which the electric field isE = η0H × br, so that the Poynting
vector isS = η0|H|2

S =
η0k4d2L2

4π2r2 {|I+|2[A2
− + B2

−] + |I−|2[A2
+ + B2

+]+

2ℜ{I+I−∗}[A−A+ + B−B+]}. (37)

We calculate the radiated power using Eq. (12), and obtain

Prad = P+
rad + P−

rad + Prad mix (38)

whereP±
rad are the powers radiated by the individual forward and

backward waves, and are given by (20), using the adequate current:

P±
rad = 60 Ω(kd)2|I±|2Z(kL, neq , n), (39)

andPrad mix is the power radiated by the interference betweenI+

andI−, and is given by

Prad mix = 60 Ω(kd)2ℜ{I+I−∗}
h
1 − n2

i
Zmix (40)

where

Zmix = cos(2kLneq)

»
1 − neq + 1/neq

2
W

–
+

neq + 1/neq

2
sin(2kLneq)[Si(a+) − Si(a−)] − sinc(2kL).

(41)

The argumentsa+ anda− are defined in Eq. (14) andW is defined
in Eq. (27).

Unlike the free space case [3] in whichPrad mix = 0, for TL in
insulated dielectric the interference between the waves contributes
to the radiation, and of course the contribution vanishes inthe free
space limit for whichn = 1. To be mentioned thatn = 1, may also
occur in the insulated case (neq > 1) if ǫp = neq .

In the next section we validate the analytic results obtained in
this section, using ANSYS commercial software simulation and
additional published results on radiation losses from TL.

3 Validation of the analytic results

3.1 Comparison with [11]

In 2006 Nakamura et. al. published the paper “Radiation Character-
istics of a Transmission Line with a Side Plate” [11] which intends to
reduce radiation losses from TLs using a side plate. The sideplate is
a perfect conductor put aside the transmission line, to create opposite
image currents, and hence reduce the radiation.

The authors first derived the radiation from a TL without the
side plate, for the free space case, and also for TL inside dielec-
tric, but the dielectric has been taken into account in what concerns
the propagation constantβ = neqk only, ignoring the polarisation
currents.

Therefore for the sake of comparison with [11] we have to use
ǫp = 1, hencen = neq in all our results.

We first remark thatI0 in [11] is a forward current, and from
Eq. (19) in [11], it is evident that they used RMS values. Hence I0
in [11] is the equivalent of our|I+|. Also they used (capital)K for
the equivalent refraction index, called in this workneq .

In [11] they did not obtain analytic expression for the radiation as
function of TL length, but they did obtain analytic expressions for
the long TL limit, with which we compare here our results. Eq.(29)
simplifies forn = neq to:

Z(kL → ∞, neq , n = neq) = n2
eq − neq

n2
eq − 1

2
ln

neq + 1

neq − 1
(42)
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so that the power radiated by a semi-infinite TL in Eq (31) is:

P+
rad (semi-infinite)= 30 Ω|I+|2(kd)2

(
n2

eq − neq
n2

eq − 1

2
ln

neq + 1

neq − 1

)

(43)
which isexactlywhat they called “the radiated power from the input
end (or output end) alone”, given in Eq. (30) in [11] (note that they
used the distance between conductors2h, corresponding to ourd,
from there the factor 4).

Also note that the limit ofZ in Eq. (42) forneq → ∞ is 2/3,
according to the casen = neq in Eq. (32). This may be confirmed
by comparing Eqs. (31) and (32) in [11].

Next we compare the radiation patterns obtained in Figure 5 of
[11], with ours. In [3] we compared the free space case in panel
(a), and here we compare our result (Eq. (21) withn = neq ) with
panel (b) of Figure 5 in [11], showing the radiation patternsfor a
TL of 1 wavelength, for different values ofneq . This is shown in
Figure 6. It is worthwhile to remark that the radiation pattern (Eq. 21)

neq = 1

y
z

x

neq = 1.25

y
z

x

neq = 1.5

y
z

x

neq = 1.75

y
z

x

neq = 2

y
z

x

Fig. 6: Radiation pattern calculated from Eq. (21) withn = neq for
TL of 1 wavelength for the casesneq = 1, 1.25, 1.5, 1.75 and 2.
They are identical to the parallel cases shown in Figure 5(b)of [11].
Note that the definitions of thex and z axes are swapped in [11]
compared to our definitions, we therefore showed them in an orien-
tation which makes the comparison easy (i.e. ourz axis is oriented
in the plots in the same direction as theirx axis).

does not depend on the distance between the conductorsd (or 2h
in [11]), hence the annotation ofh/λ = 0.1 in Figure 5 of [11] is
redundant, and probably has been added to the caption because the
authors computed the radiation patterns numerically forh/λ = 0.1,
without deriving an analytic expression.

Next, we compare our results with Figure 6 in [11], which is the
numerical integration of Eq. 20 in [11] for the casesneq = 1 and 2
(namedK = 1,2) where the solid line represents the free space case
(neq = 1) and the dashed line represents theneq = 2 case. To cal-
culate the result in Figure 6 of [11] they usedI0 = 1A, hence we
set |I+| = 1A in Eq. (20).2h is the distance between the conduc-
tors in [11], equivalent tod in this work, and they usedhλ = 0.1,
therefore(kd)2 = (4πh/λ)2 = 1.5791 in Eq. (20). Hence the pref-
actor60 Ω(kd)2|I0|2 = 94.746 [W]. The asymptotic value ofZ in
Eq. (42) is 1 forneq = 1 and 0.704 forneq = 2 (as shown also
in Figure 3), therefore the asymptotic power forkL ≫ 1, for the

two cases shown in the figure are94.75 [W] and 94.75 × 0.704 =
66.72 [W], respectively. The results of Eq. (20) forneq = 1 and
2, overlapped on Figure 6 in [11], have been shown in Figure 2 of
[4] (and they are identical in shape to the corresponding cases of
neq = 1 and 2 in Figure 3, up to the constant94.75 [W]).

In the next sections we take some examples of cross section
geometries on which we apply the analytic result Eqs. (20), (22)
or (38) and compare the results with simulation results of ANSYS-
HFSS commercial software, in the frequency domain, FEM tech-
nique.

3.2 Comparison with ANSYS simulation results - Example 1

In this example we use the cross section shown in Figure 7, which is
similar to the one used in [3], only insulated in a dielectricmaterial.
We performed an ANSYS-HFSS cross section analysis at the fre-

Fig. 7: The cross section consists of two circular shaped ideal con-
ductors of radiusa = 1.27 cm (dark blue), the distance between their
centres beings = 3.59 cm. The dielectric insulator (pink) is circular
with radius2a for |x| > s/2 and rectangular in the region|x| < s/2.
The relative permittivity of the dielectric insulator isǫr = 3.

quency 240 MHz. From this analysis we obtained the propagation
constantβ = neqk = 8.1 [1/m], establishing the equivalent refrac-
tion indexneq = 1.613. An arrow plot of the transverse electric field
ET is shown in Figure 8.
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Fig. 8: Arrow plot of ET for the cross section shown in Figure 7.

From this analysis, using Eqs. (B.22), (B.25 and (B.26) one finds
that α = −0.76 × 10−3, confirming Eq. (B.27) and we obtain the
separation distance in the twin lead representationd = 2.46 cm
(close to the distance obtained in the free space case [3], 2.54 cm).

Next using Eq. (B.37) we obtainǫp = 1.73, so that n =
neq/ǫp = 0.93. From the cross section analysis we also obtain the
value of the characteristic impedanceZ0 = 65.5Ω, which is very
close to what we obtained in [3] for a similar configuration 105.6Ω
divided by neq = 1.613 (see Eq. (A.13)). This confirms that the
electric size of our cross section is small (see discussion at the end
of Appendix A).
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We summarise here the parameters used in Eq. (22) for the
comparison with simulation:

d = 2.46cm neq = 1.613 n = 0.93 Z0 = 65.5Ω (44)

The simulation setup is shown schematically in Figure 9. TheTL
is ended at both sides by lumped ports of characteristic impedance
Zport = 50Ω, but fed only from port 1 by forward wave volt-
ageV +

port = 1 V , so the equivalent Thévenin feeding circuit is a
generator of2V +

port in series with a resistanceZport.

Fig. 9: Simulation setup for obtaining2 × 2 S matrices for different
TL lengths.

We obtained from the simulation S matrices defined for a char-
acteristic impedanceZport at both ports, for different lengths of the
transmission line (similarly to [3]). Following the same procedure
described in Section 3.1 of [3], (based on [6, 13–15]) we obtained
from each S matrix the delay angleΘ of the TL, from which we
calculate the simulated relative decay of the forward wave power

P+
rad

P+ = −2Im{Θ}. (45)

In Figure 10 we compare the analytic result for the relative power
radiated by a forward wave in Eq. (22) with the result in Eq. (45)
obtained from ANSYS-HFSS simulation, at the frequency 240 MHz.
The result shows a very good match between theory and simulation
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Fig. 10: Relative radiation lossesPrad/P+: comparison between
the analytic result in Eq. (22) and the ANSYS-HFSS simulation
result (Eq. (45)) for two parallel cylinders TL. The horizontal axis
is the TL line length in units of wavelengths.
with an average absolute relative error of 4%.

For this cross sectionn is 0.93, hence close to 1, so the interfer-
ence term (Eq. (40)), which scales like1 − n2 is small. We therefore
do not simulate it for this cross section example, and we shall do it
in the next examples, as follows.

3.3 Comparison with ANSYS simulation results - Example 2

In this example we use a microstrip cross section shown in Figure 11.
The width of the “plus” conductor isw = 3.4 mm, the distance
between the conductors iss = 1.52 mm and the relative permittivity
is ǫr = 3.5. We avoided the conventional notationd for the distance
between the conductors, becaused is reserved for the equivalent
distance in the twin lead representation, computed from thecross
section analysis (see Appendix B). However, as expected, for the
microstrip case it comes out thatd equals the distance between the

conductors, as we shall see in the following cross section analysis.
Using the microstrip formulae [6], we obtain:

Fig. 11: Microstrip cross section: the ground conductor (of width
w1 → ∞) is at x = 0 and the “plus” conductor, of widthw =
3.4mm, is located atx = s = 1.52mm. The conductors are shown
in dark blue and the thickness of the “plus conductor” is 17µm (not
mentioned in the figure). The dielectric insulator (pink) isof relative
permittivity ǫr = 3.5.

ǫeq =
ǫr + 1

2
+

ǫr − 1

2
p

1 + 12s/w
= 2.7455 (46)

so thatneq =
√

ǫeq = 1.657. The characteristic impedance forw >
s is given by (see [6])

Z0 =
η0

neq [w/s + 1.393 + 0.667 ln(w/s + 1.444)]
= 50.55 Ω

(47)
Because of the “infinite” ground conductor in the definition of

the microstrip, the theoretical solution implies 0 fields inthe region
x < 0, and of course perpendicular E field and parallel H field on the
planex = 0+. We need to run simulations to determine the fields’
structure in the cross section and to calculate the S parameters for
different microstrip lengths, for finding the radiation losses as func-
tion of the TL length, as we did in the previous example. Clearly,
simulations cannot reproduce fields close to 0 atx < 0, unless one
chooses a very big value forw1, consuming a lot of time and mem-
ory. For values ofw1 of the order ofw (like 2w or 3w), simulations
on the configuration in Figure 11 will suffer from significantinaccu-
racy, not being able to assure a perpendicular E field and a parallel
H field on the planex = 0+.

The method to overcome this is to use an “imaged” configuration
shown in Figure 12. The imaged microstrip configuration assures

Fig. 12: Imaged microstrip cross section: the ground conductor at
x = 0 has been eliminated and the conductor and dielectric atx > 0
have been imaged to the regionx < 0. For the imaged configuration,
w1 does not need to be very big.
by symmetry perpendicular E field and parallel H field on the plane
x = 0, independently of the size ofw1. It appears that increasing
w1 above the value2w almost does not change the results, hence the
choicew1 = 2w is very good.

We also remark that for a given forward wave currentI+, the
imaged configuration carries twice the power of the originalconfig-
uration, implying a value of characteristic impedance which is twice
the value in Eq (47), i.e.

Z0 (imaged)= 50.55 × 2 = 101.1 Ω (48)

Also, for a given forward wave currentI+, the imaged configuration
radiates twice the power of the original configuration, so that the
relative radiated power in Eq. (22) is unchanged.

IET Research Journals, pp. 1–12
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Like in the previous example we perform a cross section analysis,
and Figure 13 shows an arrow plot of the transverse electric field
ET .
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Fig. 13: Arrow plot of ET for the cross section shown in Figure 12.
From the cross section results, using Eqs. (B.22), (B.25) and

(B.26), we find that the weight of the longitudinal polarisation is neg-
ligible (as in the previous example) and one obtains the separation
distance in the twin lead representationd = 3.04 mm. As mentioned
previously, we expected this separation distance to be equal to the
distance between the conductors, and indeed it came out2s (see
Figure 12).

From the cross section analysis we also obtain the value of
the characteristic impedanceZ0 = 99.37Ω (very close to this in
Eq. (48)) and the equivalent dielectric permittivityǫeq = 2.7 (very
close to this in Eq. (46)), soneq =

√
ǫeq = 1.64. Using Eq. (B.37)

we obtainǫp = 2.7, which equals in this case toǫeq , so thatn =
1/neq = 0.6 .

We summarise here the parameters for this cross section:

d = 3.04mm neq = 1.657 n = 0.6 Z0 = 99.37Ω (49)

We first compare with ANSYS-HFSS simulation the power radi-
ated by a forward wave, relative to the power carried by the wave
(Eq. 22), following the same procedure described in the previous
example, (based on Section 3.1 of [3]) and using the same schematic
setup in Figure 9. We obtained S matrices for different TL length
to calculate Eq. (45) which is compared with Eq. (22) for the
microstrip. The comparison is shown in Figure 14. The resultshows
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Fig. 14: Relative radiation lossesP+
rad/P+: comparison between

the analytic result in Eq. (22) and the ANSYS-HFSS simulation
result (Eq. (45)) for the (imaged) microstrip TL. The horizontal axis
is the TL line length in units of wavelengths.
a very good match between theory and simulation with an average
absolute relative error of 3.2%.

For this cross sectionn = 0.6 (far from 1), it is therefore expected
the interference term (Eq. (40)) to be substantial. We builta simula-
tion setup shown schematically in Figure 15 to simulate the effect

Fig. 15: Simulation setup for obtainingS11 for different TL lengths.
of the interference term. The TL is fed atz = −L by a lumped
port of Zport = 50 Ω with a wave ofV +

port = 1 V so the equiva-
lent Thévenin feeding circuit is a generator of2V +

port in series with
a resistanceZport (like in the setup from Figure 9), but the right side
atz = L is left open.

Using as first approximation the lossless TL theory, the open
end implies|I+| = |I−|, and the following connection between the
phases ofI+ andI−

I+e−jβL + I−ejβL = 0, (50)

from which

ℜ{I+I−∗} = −|I+|2 cos(2βL). (51)

This relation is used in Eq. (40) to calculate the interference term
Prad mix contribution in Eq. (38). The value of|I+| (or |I−|) to be
used for the termsP±

rad in Eq. (39), in terms ofV +
port is given by

|I+| =
|V +

port|q
Z2

0 cos2(2βL) + Z2
port sin2(2βL)

(52)

Note that the values in Eqs. (51) and (52) are calculated separately
for each value ofL, for the comparison with simulation.

By conservation of energy, the power radiated according to
Eq. (38), must be equal to the power of the forward wave coming
from port 1:|V +

port|2/Zport, multiplied by1 − |S11|2. In Figure 16
we compare the analytic result from Eq. (38) relative to the port
power:

Prad

|V +
port|2/Zport

(53)

with the values of1 − |S11|2 obtained from the ANSYS-HFSS sim-
ulation for different TL lengths. The result shows a very good match

0

0.005

0.01

0.015

0.02

0.025

0.03

0 0.5 1 1.5 2 2.5

P
ra

d/
P

+ po
rt

l / λ

Theory
Simulation

Fig. 16: Relative radiation losses calculated from Eq. (53), com-
pared with1 − |S11|2 obtained from the ANSYS-HFSS simula-
tions for the (imaged) microstrip TL, for different TL lengths. The
horizontal axis is the TL line length in units of wavelengths.
between theory and simulation with an average absolute relative
error of 1.8%.
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3.4 Comparison with ANSYS simulation results - Example 3

In this example we use the same microstrip as in the previous sub-
section shown in Figure 11, but having a high dielectric relative
permittivity ǫr = 10.2. All other parameters are identical and for
the simulation we use the imaged configuration shown in Figure 12.

Using Eqs. (46) and (47) we obtainǫeq = 7.42 (i.e.neq = 2.72)
and Z0 = 30.74 Ω, but for the imaged configuration it is twice
Z0 (imaged)= 61.48 Ω.

We repeat here the comparisons from the previous subsection
(Figures 14 and 16), for the high dielectic permittivity. The results
are shown in Figures 17 and 18. They yield a good match between
theory and simulation with average absolute relative errors of 3.3%
and 5.7% respectively.
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Fig. 17: Same as Figure 14, withǫr = 10.2.
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Fig. 18: Same as Figure 16, withǫr = 10.2.

4 Conclusions

We presented in this work a general algorithm for the analytic
calculation of the radiation losses from transmission lines of two
conductors in a dielectric insulator. This work is the generalisation
of [3], which deals with TL in free space, and similarly to [3], we
assumed a small electric cross section, so that the TL carries a Quasi-
TEM mode, which behaves similar to TEM.

We derived the radiation losses of matched TL (carrying a single
forward wave) and generalised the result for non matched TL,carry-
ing any combination of forward and backward waves. Unlike inthe
free space case [3], the interference between the forward and back-
ward wave have a non zero contribution to the radiated power,and
we successfully validated our analytic results by comparing them
with the results of ANSYS-HFSS simulations for both matchedand
non matched TL. Also, we compared the matched case with [11],but
had to neutralise the polarisation currents for the sake of this com-
parison (given the fact that that [11] did not include them intheir
calculation).

For the specification of the transverse polarisation currents we
introduced a new definition ofǫp, which basically would mean the
usual ǫeq if all the polarisation current elements would be in the
same direction (as approximately occurs in a microstrip). However
in the general case,ǫp < ǫeq , where the relation(ǫp−1)/ǫp

(ǫeq−1)/ǫeq
repre-

sents the average projection of the polarisation current elements on
the main direction of the resultant contribution (set without loss of
generality as thex direction).
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6 Appendices

6.1 Appendix A: Cross section analysis of Quasi-TEM mode

We perform in this manuscript Quasi-TEM cross sections analy-
ses, to obtain characteristics which affect the radiation process of
dielectric insulated TL. We therefore summarise in this appendix
some properties of the cross section solution for a general case of
hybrid TE-TM fields [5, 6]. The time dependence isejωt, so that the
derivative with respect to time of any variable is a multiplication by
jω.

We call the longitudinal (z directed) fieldsEz and Hz , and
the transverse (x and y components)ET and HT . The trans-
verse “nabla” operator is named∇T ≡ bx∂x + by∂y in Cartesian
coordinates. One looks for a forward wave solution, having the z
dependence of the form

e−jβz, implying: ∂z = −jβ (A.1)

on any variable. This requirement implies the solution of the
Helmholtz equations for the longitudinal fields, and linearrela-
tions connecting the transverse fieldsET andHT with ∇T Ez and
∇T Hz , see [5, 6].

For a guided propagation mode, the longitudinal fields are 90
degrees out of phase relative to the transverse fields, so that any
transverse Poynting vector is pure imaginary, which means that there
is a standing wave in the transverse direction and the only net energy
is flowing in the longitudinal direction [5, 6].

It is therefore convenient to scale the phase of the cross section
solution so that the transverse fields are real and the longitudinal

IET Research Journals, pp. 1–12
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fields are pure imaginary, so that:

ET ≡ ET,R ; HT ≡ HT,R (A.2)

and

Ez ≡ jEz,I ; Hz ≡ jHz,I , (A.3)

where the “R” and “I” subscripts indicate real and imaginaryparts,
respectively. From the cross section solution one obtains the Quasi-
TEM mode propagation wavenumberβ (see Eq. (A.1)), from which
one defines the effective refraction index of the solutionneq via

β = neqk, where k = ω/c (A.4)

is the free space wavenumber,c being the free space speed of light
in vacuum. This equivalent refraction index satisfies1 ≤ neq ≤ n,
according to “how much” fields are in the dielectric and “how much”
in the surrounding air, wheren =

√
ǫr is the refraction index of the

dielectric material.
To be mentioned that such mode is called Quasi-TEM, because it

behaves close to TEM, in the sense that the transverse fieldsET and
HT are dominant relative to the longitudinal fieldsEz andHz. This
may be symbolically written as

ET , (η0/neq)HT ≫ Ez, (η0/neq)Hz, (A.5)

in the averaging sense (η0 = 377Ω is the free space impedance). As
smaller the electrical size of the cross section, the above condition is
more accurate.

Now examining the surface free current continuity on one of the
conductors in Figure 1 (say the “plus” conductor having the contour
c1), we obtain

∂tρs + ∂zJs z + ∂c1Js c1 = 0 (A.6)

whereρs is the free surface charge andJs z andJs c1 are the longi-
tudinal and transverse components of the free surface current. Using
∂t = jω and∂z = −jβ (Eq. (A.1)), we get

jωρs − jβJs z + ∂c1Js c1 = 0 (A.7)

Clearly the free transverse surface currentJs c1 which is propor-
tional toHz is negligible relative to longitudinal surface currentJs z

which is proportional toHT (see Eq. (A.5)). But for now we do not
need this condition, because the last term in Eq. (A.7) vanishes after
integrating around the contour

∮
c1, obtaining

jωρl − jβI+ = 0, (A.8)

whereρl is the charge per longitudinal length unit. We shall useI+,
V + for the forward current and voltage waves, respectively (wedeal
with a forward wave, so in principle, all quantities should have a
“+” superscript, but it would be too cumbersome). Here we usethe
capacitance per length unit defined viaρl = CV +:

ωCV + = βI+, (A.9)

and for this we do need condition (A.5), because the potential differ-
ence between the conductorsV + has a meaning only if its value∫
ET · dl is independent of the integration trajectory, and this is

strictly correct only ifHz = 0.
Supposing condition (A.5) is satisfied and using Eq. (A.4), and the

definition of the characteristic impedanceZ0 ≡ V +/I+, we obtain

Z0 =
neq

cC
, (A.10)

and comparing it to the “telegraph model” definitionZ0 ≡
p

L/C,
L being the inductance per length unit, one obtains

√
LC = neq/c (A.11)

Dealing with dielectric materials, the inductance per unitlengthL is
the same as the free space inductance, we therefore concludefrom
Eq. (A.11) thatC is proportional ton2

eq = ǫeq , so that

C = ǫeqCfree space. (A.12)

From Eqs. (A.10) and (A.12) it results thatZ0 is inverse proportional
to neq , so that

Z0 = Z0 free space/neq (A.13)

We may understand from this analysis that the relation between β
andk, namelyneq describes in the DC limit the connection between
the capacitance per unit length (or the characteristic impedance)
with dielectric and the parallel value in free space according to
Eqs. (A.12) and (A.13). Therefore the relation betweenβ and k
keeps linear as long as the electric size of the cross sectionis small,
and may deviate from this relation for higher frequencies.

6.2 Appendix B: Far vector potential of separated
two-conductors transmission line in twin lead
representation

In this appendix we calculate the far magnetic vector potential for
a general TL insulated in a dielectric material of relative dielectric
permittivity ǫr as shown in Figure 1.

In spite of dealing with dielectric insulators on has to use the
regular free space Lorenz gauge [12], in the frequency domain

∇ · A +
jωV

c2
= 0, (B.1)

obtaining the following wave equations for the magnetic vector
potentialA and the scalar potentialV [12]:

“
∇2 + k2

”
A = −µ0Jeff ;

“
∇2 + k2

”
V = −ρeff/ǫ0. (B.2)

where

Jeff = J + jωP + ∇ × M ; ρeff = ρ − ∇ · P, (B.3)

J andρ being the free current and charge densities, respectively,

P = ǫ0(ǫr − 1)E (B.4)

is the electric polarisation field andM is the magnetisation field
which is 0 in our case. We remark thatJeff and ρeff satisfy the
continuity equation

∇ · Jeff + jωρeff = 0, (B.5)

which holds separately for the free and polarisation charges/currents.
We see thatρeff can be calculated fromJeff, the same asV can be
calculated fromA using (B.1). This means that we have to solve
only for A in Eq. (B.2), as usually done in radiation problems [5, 7–
10]. Its formal solution, for a TL from−L to L is the convolution
integral

A(x, y, z) = µ0

∫L

−L
dz′

∫∫

TL cross
section

dx′dy′Jeff(x
′, y′, z′)G(R) (B.6)

whereG(s) = e−jks

4πs is the 3D Green’s function and

R =
q

(x − x′)2 + (y − y′)2 + (z − z′)2. (B.7)

We remark that (B.6) is the potential vector due to the currents along
the TL, and the contribution of the termination (source and load)
currents [3] are calculated at the end of this appendix.

According to (A.1), we use

Jeff(x
′, y′, z′) = Jeff(x

′, y′)e−jβz, (B.8)

and approximatingR in (B.7) in far field in spherical coordinates to

R = r − (x′ cos ϕ + y′ sin ϕ) sin θ − z′ cos θ (B.9)

we rewriteA in the far field

A =µ0G(r)

∫L

−L
dz′ejkz′(cos θ−neq)

∫∫

TL cross
section

dx′dy′Jeff(x
′, y′)ejk sin θ[x′ cos ϕ+y′ sin ϕ]. (B.10)

At this point thez′ integral can be separated from the cross section
integral. Integrating onz′ we obtain

A = µ0G(r)2L sinc[kL(cos θ − neq)]Q(θ, ϕ) (B.11)
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wheresinc(x) ≡ sin x/x andQ(θ, ϕ) is

Q =

∫∫

TL cross
section

dx′dy′Jeff(x
′, y′)ejk sin θ[x′ cos ϕ+y′ sin ϕ]. (B.12)

so that the direction ofA is according to the direction ofQ.
Considering the higher modes to be in deep cutoff, so that

kx′, ky′ ≪ 1 (small electric cross section), and defining the radial
cross section unit vectorbρ(ϕ) = bx cos ϕ + by sin ϕ and the radial
cross section integration variables vectorρ′ ≡ x′bx + y′by we may
rewrite Eq. (B.12) as

Q =

∫∫

TL cross
section

dx′dy′Jeff[1 + jk sin θ bρ(ϕ) · ρ′]. (B.13)

The strategy to calculateQ is as follows: for components ofJeff on
which the integraldx′dy′ vanishes over the TL cross section, we
perform the integral of the component multiplied byjk sin θ bρ(ϕ) ·
ρ′, as follows

jk sin θ

∫∫

TL cross
section

dx′dy′Jeff [bρ(ϕ) · ρ′], (B.14)

while for components ofJeff on which the integraldx′dy′ is not 0,
we neglectk sin θ bρ(ϕ) · ρ′ relative to 1, as follows∫∫

TL cross
section

dx′dy′Jeff (B.15)

For the free space TL [3] we had to deal only with the longitudinal
(z component) ofA in what concerns the TL currents contribu-
tion (which were free surface currents in thez direction), and we
had transverse components (x or y) of A only from the termina-
tions of the TL. In the current case we note thatJeff contains both
free longitudinal surface currents and polarisation currents contribu-
tions (which have both longitudinal and transverse components). We
therefore deal first with the longitudinal component ofQ, which is
written as:

Qz = Qz free + Qz pol, (B.16)

whereQz free is the contribution of the longitudinal free surface cur-
rentsKz and hence is similar to [3] (so that the solution to Eq. (B.13)
has the form (B.14)):

Qz free = jk sin θ bρ(ϕ) ·
∮

dc Kz(c)ρ′(c), (B.17)

wherec is the contour parameter around the perfect conductors (i.e.
c1 andc2, see Figure 1). Separating the contours and noting that we
deal with a differential mode for which the currents in the conductors
are equal but with opposite signs, and usingKz = HT ‖ (i.e. the
component ofHT parallel to the conductors) one obtains:

Qz free = jk sin θI+
d0 · bρ (B.18)

the forward currentI+ is

I+ =

∮
dc1HT ‖(c1) = −

∮
dc2HT ‖(c2), (B.19)

d0 ≡
∮

dcHT ‖(c)ρ
′(c)/I+, (B.20)

The vectord0 represents the vector distance pointing from the
“negative” conductor to the “positive” conductor in the twin lead
equivalent (see Figure 2). As in [3] it is convenient to redefine thex
axis to be aligned withd0, so thatd0x = d0 andd0y = 0, so that
(B.18) simplifies to

Qz free = jk sin θI+d0 cos ϕ (B.21)

and the expression for the distanced0 simplifies to

d0 ≡
∮

dcHT ‖(c)x
′(c)/I+, (B.22)

ForQz pol in Eq. (B.16) we use the longitudinal polarisation current
densityjωǫ0(ǫr − 1)Ez (see Figure 1), which according to (A.3)
can be written as−ωǫ0(ǫr − 1)Ez,I , and the integration is only on
the dielectric region. Clearly,Ez being a solution of the Helmholtz
equation, the integral on the TL cross section vanishes, andfor the
twin lead representation, we obtain

Qz pol =

∫∫

dielectric
region

dx′dy′[−ωǫ0(ǫr − 1)]Ez,Ijk sin θx′ cos ϕ,

(B.23)
which can be written as

Qz pol = jk sin θαI+d1 cos ϕ (B.24)

where

α ≡ −ωǫ0(ǫr − 1)

∫∫

dielectric
region

dx′dy′Ez,IH(Ez,I)/I+, (B.25)

andH represents the Heaviside step function, limiting the integral to
the regions in whichEz,I > 0 and

d1 ≡

∫∫
dielectric

region

dx′dy′Ez,Ix′

∫∫
dielectric

region

dx′dy′Ez,IH(Ez,I)
. (B.26)

Clearly,α being the ratio between something proportional toEz and
I+, which is proportional toHT , satisfies

|α| ≪ 1 (B.27)

(see Eq. (A.5)). Using the above definitions, we sum Eqs. (B.21) and
(B.24) to obtain the totalz component ofQ

Qz = jk sin θI+d cos ϕ (B.28)

where

d = d0 + αd1 ≃ d0 (B.29)

is the separation distance between the conductors in the twin lead
representation, analogous to what we obtained in [3]. For the case of
conductors in dielectric insulator this vector separationhas two con-
tributions:d0 is due to the free currents,d1 due to the polarisation
currents andα is the “weight” of the longitudinal polarisation con-
tribution, but as explained above, this weight is typicallysmall (see
Eq. (B.27)).

Now we calculate the transverse component ofQ, which under
the twin lead representation simplifies tobxQx (see Figure 2), where
Qx is due to the transverse polarisation currents. We therefore use
for Jeff x the x directed polarisation current densityJp x (and the
solution to Eq. (B.13) has the form (B.15)):

Qx =

∫∫

dielectric
region

dx′dy′Jp x, (B.30)

where
Jp x = jωPx = jωǫ0(ǫr − 1)Ex, (B.31)

andEx is thex component ofET .
It is useful to describe the transverse polarisation current in the

twin lead representation as a−bx directed surface current on the
surfacey = 0 (see Figure 2). The polarisation (surface) current is
proportional to the displacement surface current:

Jsd x = −jωCV +, (B.32)

where the minus is due to the fact that the current is in the−bx
direction. Using relations (A.4) and (A.10), this can be written

Jsd x = −jβI+ (B.33)

Inside a uniform dielectric material the polarisation current is(ǫr −
1)/ǫr times the displacement current, but having part of the fieldsis
in air, it looks like one has to use(ǫeq − 1)/ǫeq times the displace-
ment current. As shown in Appendix C, due to the fact that parts of
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the polarisation current elements are in the perpendicular(y) direc-
tion, if one wants to use the same value ford as defined in Eq. (B.29),
one needs to use a value for the relative dielectric permittivity in gen-
eral smaller thanǫeq , which we nameǫp (the subscript “p” stands for
polarisation), for expressing the polarisation surface current:

Jsp x =
ǫp − 1

ǫp
Jsd x, (B.34)

and being a surface current ony = 0, one gets the polarisation
current density

Jp x = Jsp xδ(y) (B.35)

The value ofǫp satisfies:1 ≤ ǫp ≤ ǫeq , and Appendix C is dedicated
to explain this connection, the physical meaning ofǫp and its relation
to ǫeq .

Using (B.35) in (B.30), the integraldx′ is carried out from 0
to d, while thedy′ integral yield 1, because of the delta function,
obtaining

Qx =

∫d

0
dx′Jsp x = dJsp x = −jβI+d

ǫp − 1

ǫp
. (B.36)

By comparing (B.36) with (B.30) and using (B.31), one obtains an
equation to calculateǫp from the numerical cross section solution,
as follows:

ǫp − 1

ǫp
= − ǫr − 1

neqη0I+d

∫∫

dielectric
region

dx′dy′Ex, (B.37)

where the RHS is positive, because the phase ofEx is scaled to
point mainly from the “positive” to the “negative” conductor, i.e. it
is mainly negative.

At this point we summarise the results for the vector potential
components contributed by the currents along the TL. From (B.11)
and (B.28) we obtain

Az = µ0G(r)2L sinc[kL(cos θ − neq)]jk sin θI+d cos ϕ,
(B.38)

and from (B.11) and (B.36) we get thex directed contribution. Given
this contribution is from transverse polarisation, we nameit Ax pol:

Ax pol = µ0G(r)2L sinc[kL(cos θ − neq)](−jβI+)d
ǫp − 1

ǫp
.

(B.39)

It is worthwhile to mention that any representation that keeps the
value ofd(ǫp − 1)/ǫp correct, for example replacingǫp by ǫeq , but
accordingly use a smaller value ofd for the transverse polarisation
would be a completely equivalent representation, but we chose to
keep the same value ofd for representing the free currents and the
polarisation currents (see discussion in Appendix C).

Now we calculate the contribution of the termination currents to
the potential vector. The twin lead geometry allows us to usea sim-
ple model for the termination currents, which are in thex direction
(see Figure 2), and their values are±I+e±jβL at the locations∓L
respectively. They result in

Ax 1,2 = ±µ0I+
∫d/2

−d/2
dx′e±jβLG(R1,2) (B.40)

where the indices 1,2 denote the contributions from the termination
currents at∓L, respectively, (see Figure 2). The distancesR1,2 of
the far observer from the terminations may be expressed in spherical
coordinates, as follows:R1,2 ≃ r − z1,2 cos θ − x′ sin θ cos ϕ. The
integral (B.40) is carried out forkd ≪ 1, using (A.4), results in

Ax 1,2 = ±µ0I+dG(r)e∓jkL(cos θ−neq). (B.41)

The two contributions sum toAx 1 + Ax 2:

Ax free = µ0G(r)I+d(−2j) sin[kL(cos θ − neq)], (B.42)

and we call itAx free, because the termination currents are free cur-
rents. The total transversex directed potential vector is obtained by

summing (B.39) with (B.42):

Ax =µ0G(r)I+d2L sinc[kL(cos θ − neq)](−jk)

(cos θ − neq/ǫp) (B.43)

6.3 Appendix C: The physical meaning of ǫeq , ǫp and the
connection between them

We used in this work a new quantity calledǫp for the purpose of
defining the contribution of the transverse polarisation currents. This
appendix is dedicated to explain the physical meaning ofǫp and
show the connection between it andǫeq .

First, it should be mentioned that it is not the polarisationcurrent
per se which affects the radiation, but rather the polarisation current
element, i.e. dJsp x - see Eq. (B.36). Looking at Eq. (B.37), it is
clear that the value ofd(ǫp − 1)/ǫp is only a function of the cross
section geometry (whiled is something that we defined in Eq. (B.29)
to formulate the twin lead model).

This means that the only requirement to obtain a correct expres-
sion for the radiation is to use the correct value ofd(ǫp − 1)/ǫp,
and we had the freedom to replaceǫp by ǫeq and determine accord-
ingly a new value for the equivalent distance for the polarisation
contribution and call itdp for example. This would imply

d
ǫp − 1

ǫp
= dp

ǫeq − 1

ǫeq
, (C.1)

so the usage ofǫeq anddp gives a completely equivalent formulation,
leading to the same result. The only reason we did not choose it is
aesthetic: we simply preferred a uniform twin lead model forboth
free currents and polarisation, having the same effective separation
distanced.

We emphasise this point, because we need a consistent definition
for the separation distance to analyse the polarisation current ele-
ments in an equivalent circuit that we develop here (shown in
Figure C.1). For this purpose we use the same valued used along

Fig. C.1: The space between the conductors is modelled by capaci-
tors in parallelC1, C2, ...CN , each one representing a slice around
an electric field line (shown in Figure C.2). Each electric field line
may pass part of its trajectory through the air, and the otherpart
through the dielectric, hence each capacitorCi consists of two
capacitors in series:Ca i andCd i, so thatC−1

i = C−1
a i + C−1

d i . The
valuefi is the fraction of voltage on the dielectric, for the field line
defining capacitorCi (see Figure C.2).
the whole paper, i.e. this one given in Eq. (B.29).

We consider the capacitors in Figure C.1 as parallel plates
capacitors, as follows

Ca i ≡
ǫ0A0

da i
; Cd i ≡

ǫ0ǫrA0

dd i
, (C.2)

whereA0 is a fixed effective area (more accurately perpendicular
length),da i anddd i are the effective separation distances of the air
and dielectric parts, respectively, and we require their sum to be the
total effective separation distanced mentioned before:

da i + dd i = d. (C.3)

From Eqs. (C.2) and (C.3) it is easy to show thatda i anddd i come
out

da i = d
1 − fi

1 − fi + ǫrfi
; dd i = d

ǫrfi

1 − fi + ǫrfi
, (C.4)

and the capacitorCi may be written as

Ci ≡
ǫ0A0

d
[1 − fi + ǫrfi] (C.5)
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The field lines describing the capacitorsCi in the equivalent circuit
in Figure C.1 are shown in Figure C.2 for a microstrip. In general

Fig. C.2: The transverse electric field in a microstrip shown by the
blue arrows. The total voltage on the microstrip isV . In general, field
lines are partly in the air and partly in the dielectric, and we define the
voltage on the air(1 − fi)V and the voltage on the dielectricfiV
for a given electric field linei. This is evidently shown on the “red”
line which is partly in the air and partly in the dielectric. The “green”
line passes only through the dielectric, it is therefore a special case
of the above withfi = 1. The dashed “red” line shows the projection
of the continuous line (inside the dielectric) on thex direction, and
we define the relation between the (dashed) projection length and the
continuous linegi for a given electric field linei. For the red linegi
is close but not equal to 1, but for the “green” line, being parallel to
thex direction,gi = 1.
each field line is partly in the air and partly in the dielectric, so that
the voltage on the air is

∫
air
part

ET · dl and the voltage on the dielectric

is
∫

dielectric
part

ET · dl. According to this, we definedfi the fraction of

voltage on the dielectric, as evidently shown on the “red” line in
Figure C.2. The “green” line in Figure C.2 passes only through the
dielectric, it is therefore a special case of the above withfi = 1.
The dashed “red” line shows the projection of the continuousline
(inside the dielectric) on thex direction, and the relation between the
projected line and the original line is calledgi for the electric field
line i. For the red line,gi is not equal, but close to 1. For the green
line, being in thex direction,gi = 1. The projection is discussed
further on in context with the polarisation currents.

Given the number of capacitors isN , the total capacitance per lon-
gitudinal unit lengthC is equal the sum oni of all the capacitances
Ci in Eq. (C.5)

C =
NX

i=1

Ci =
ǫ0A0

d

NX

i=1

[1 − fi + ǫrfi]. (C.6)

The free space capacitance is obtained by setting allfi = 0:
Cfree space=

Nǫ0A0

d , and the value ofǫeq is calculated from
Eq. (A.12), obtaining

ǫeq =
1

N

NX

i=1

[1 − fi + ǫrfi] = 1 + (ǫr − 1)
1

N

NX

i=1

fi (C.7)

or in a more suggestive form:

ǫeq − 1

ǫr − 1
= 〈f〉, (C.8)

where〈f〉 is the average fraction of voltage on the dielectric. Given
that electric field is proportional to voltage, and polarisation vector
is proportional toǫr − 1 times electric field (see Eq. (B.4)), suggests
thatǫeq − 1 indicates on the average polarisation vector. We remark
that using Eqs. (C.6) and (C.7), one can write the total capacitance
as

C =
ǫ0ǫeq(NA0)

d
(C.9)

so that it is represented by a parallel plates capacitor of relative
dielectric permittivityǫeq , distanced between the plates and area
(or rather perpendicular length)NA0.

Now we calculate the polarisation current element. On a given
capacitor, the displacement current isID = jωCV , which is also
the (AC) current passing through the capacitor. We remark that this
total current is a cross section integral on a current density vector

in the space between the plates, and this vector may have differ-
ent directions in different locations. The total effect on the radiation
comes from the equivalent polarisation currentelementvector contri-
bution (we chose thex axis in this direction - see Appendix B). We
therefore need thex projection of the polarisation current element
vector (see projection factorg - dashed red line in Figure C.2) - we
shall call itQP . It is obtained by multiplyingID by d(ǫp − 1)/ǫp,
whereǫp already includes effect of the projection, as explained at the
beginning of this appendix. Considering the parallel platecapacitor
of our model in Eq. (C.9), we have

QP = d
ǫr − 1

ǫr
ID = jωV ǫ0ǫeqNA0(ǫp − 1)/ǫp. (C.10)

Now we apply this to our model: the totalpolarisation current
elementQP is the sum on the polarisation current elements on all the
capacitorsin dielectricCd i. The contribution from each capacitor is
jωCd i times the voltage on this capacitorV fi, times the projection
factorgi, timesdd i(ǫr − 1)/ǫr , hence we obtain

QP =

NX

i=1

jωfiV giCd idd i
ǫr − 1

ǫr
= jωǫ0(ǫr − 1)A0V

NX

i=1

gifi

(C.11)

Now comparing (C.10) with (C.11), yields

ǫeq
ǫp − 1

ǫp
= (ǫr − 1)

1

N

NX

i=1

gifi. (C.12)

We divide it byǫeq − 1 from Eq. (C.8), obtaining

(ǫp − 1)/ǫp

(ǫeq − 1)/ǫeq
=

PN
i=1 gifiPN
i=1 fi

(C.13)

or in a more suggestive form:

(ǫp − 1)/ǫp

(ǫeq − 1)/ǫeq
= 〈g〉. (C.14)

where〈g〉 is the projection factor averaged by the fraction of volt-
age in the dielectric. Given that0 ≤ gi ≤ 1, also0 ≤ 〈g〉 ≤ 1, and
hence1 ≤ ǫp ≤ ǫeq = n2

eq , however it seems that〈g〉 cannot be 0
for a physical system, hence the lower limit should be biggerthan
0, so that practicallyǫp > 1 always. Hence we consider the case of
〈g〉 = 0, or ǫp = 1 only in the context of “ignoring the transverse
polarisation”. For the microstrip example (see Figure 13),〈g〉 ≃ 1,
so thatǫp ≃ ǫeq , but for the circular shaped conductors cross section
(see Figure 8),〈g〉 = 0.68.

Using this model, we can also show that the solution of Eq. (B.37)
yields (C.14). The integral in Eq. (B.37), carried over the dielectric
region, yields on capacitori, V +gifiA0, and this is summed on all
capacitors:

∫∫

dielectric
region

dx′dy′Ex = A0V +
NX

i=1

gifi. (C.15)

UsingV + = Z0I+, Eq. (A.10), andcη0 = 1/ǫ0, one obtains

ǫp − 1

ǫp
=

ǫ0(ǫr − 1)A0

Cd

NX

i=1

gifi, (C.16)

and usingC from Eq. (C.9), reproduces exactly Eq. (C.12), leading
to the result (C.14).

Returning to the discussion at the beginning of this appendix
(from which we derived Eq. (C.1)), we understand from Eq. (C.14)
that the physical meaning ofdp is expressed by the relation

dp

d
= 〈g〉, (C.17)

so that in the representation we used in this work of keeping the
separation valued, the projection factor lies in the definition ofǫp.
In the alternative representation of replacingǫp by ǫeq and use for the
effective separation the valuedp, the projection lies in the separation
dp.
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