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Abstract: We develop in this work a radiation losses model for Quasi-TEM two-conductors transmission lines insulated in a
dielectric material. The analysis is based on Maxwell equations and is exact in the Quasi-TEM regime, which is satisfied by the
condition of small electric cross section. All the analytic results are validated by comparison with ANSYS-HFSS simulation results

and previous published works.

1 Introduction

We presented in [3] (and previous conferences [1, 2]) aryaizal
of radiation losses from two-conductors transmissionsli(iEL) in
free space, in which we analysed semi-infinite as well asefihit,
and showed that the radiation from TL is essentially a teatim
phenomenon. We found that the power radiated by a finite Ti-, ca
rying a forward current ", tends to the constaib0$ (kd)?|17|?

(k being the wavenumber andl the effective separation between
the conductors) when the TL length tends to infinity (in picect
overpasses several wavelengths). This constant is twe@dtver
radiated by a semi-infinite TL, showing that a very long TL d&&n
regarded as two separate semi-infinite TL, see [3].

The purpose of this work is to generalise the results in [3]
to Quasi-TEM two-conductors TL isolated by a lossless diele
material. The validity of the results lies in Quasi-TEM megi (see
Appendix A), which is satisfied by the condition of small etec
cross section (the same condition used in [3]). Also, it &hdoe
mentioned that the results of this work depend entierly oysiaal

.

Fig. 1: A general cross section of two conductors insulated in a
dielectric. The grey regions are the ideal conductorsandare the
contours of those conductors. The dielectric (yellow),fisimform

sizesrelative to the wavelength, and therefore are expected to be rejative dielectric permittivitye,. Under excitation the dielectric

accurate for any frequency where the Quasi-TEM approachliid. v

insulator develops polarisation currents. The transveoarisation

We remark that power loss from TL is also affected by nearby cyrrent density (red arrows) jsoeq (e — 1)Er, w being the angu-

objects interfering with the fields, line bends, irreguies, etc. This
is certainly true, but those affectot only the radiation,but also
the basic, “ideal” TL model in what concerns the charactieris
impedance, the propagation wave number, etc. Like in [3] (@f-
erences therein) those non-ideal phenomenanateconsideredn
the current work, which derives the radiation-losses ferldnon
bending, fixed cross section TL.

The case of TL in dielectric insulator is much more compli-
cated than the free space case. The fact that the TL propagati
wavenumberg is different from the free space wavenumiieby
itself complicates the mathematics (see [4]), but in additt comes
out that one needs to consider in this case polarisatioremisin
addition to free currents. Hence, to define a generic algoritor
determining the radiation losses for two-conductors Tllated in
dielectric material, one needs a generic specificationHerpolar-
isation currents. Given polarisation current elements saramed
vectorially (see red lines in Figure 1), so that elementpeadic-
ular to the vector sum do not contribute, one has to define arage
relative dielectric permittivity, namee, (the subscript “p” stands
for polarisation), which is smaller or equal to the known igglent
relative dielectric permittivityteq [5—10]

There are three appendices in this work. Appendix A explains

some basics on Quasi-TEM cross section behaviour. We dishas
propagation wavenumbg; the equivalent relative dielectric permit-

tivity ecq and their connection to the capacitance per length unit
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lar frequency an@ the transverse component of the electric field.
The longitudinal ¢ directed) polarisation current density (green) is
jweg(er — 1)E-, E, being thez component of the electric field.

C and the characteristic impedangg (which are strictly speak-
ing well defined only for “pure” TEM). In Appendix B we develop
the far potential vector, and similarly to [3], we show thatacan
represent any two-conductors TL isolated in dielectriceriat, by
a twin lead (see Figure 2), provided the electrical size efdfoss
section is small. As mentioned before, we calculate in thEeagix
also the contribution of the polarisation currents, andséhequire
a generic definition of an average relative dielectric pivity, €p.
The connection betwees ande., and some more insight into their
physical meaning is discussed in Appendix C.

The main text is organised as follows. In section Il we calcu-
late the power radiated by a TL carrying a forward wa\e) =
Ite=78% (matched TL), for a general cross section of the TL,
as shown in Figure 1. We base the calculations on the resilts o
Appendix B, in which we show (similarly to [3]) that the rati@n
from a TL of any cross section of small electrical dimensicas be
formulated in terms of a twin lead analogue as shown in Figubeit
unlike in the free space case, this twin lead includes aldweatof
polarisation surface current. After deriving the radiapesiver and
the radiation pattern for the matched TL, we show the limithef
free space case and the limit of along TL, and how this cosrect
semi-infinite TL. The results for the matched TL are gensealifor
any combination of waves(z) = ITe 79% 4 [~¢19%,



Fig. 2: Twin lead equivalent of TL insulated in dielectric mate-
rial. The free TL currents in the conductors at= +d/2 are
+I1te98> respectively, and the free termination currents in the
conductors atz = FL are +/Te*I8L respectively, similarly to
Figure 2 in [3], onlyk replaced by3. The main difference with
respect to [3] are the polarisation currents (red arrowsjclvare
represented as surface currents on the plare0. Their value is
Jp=-z2— LiBIt5(y), see Egs. (B.33)-(B.35), and the physical
meaning ofep is explained in Appendix C.

In section lll, we validate the theoretical results obtdina
section Il, by comparing them with a previous work dealinghwi
radiation from TL [11]. This work was concerned with redughadi-
ation losses by using a side plate (mirror) to create oppasiage
currents, and they considered the free space case, andlaisside
dielectric, but ignored polarisation currents. Reducingaonfigura-
tion to the assumptions in [11], shows a very good companigitim
these results. We then compare our theoretical resultsANBY S-
HFSS commercial software simulation results for some csesson
examples. The work is ended by some concluding remarks.

Note: through this work, we use RMS values, hence there is no

1/2 in the expressions for power. Partial derivatives alweabated,
like for example derivative with respect to tin% = 0.

2 Radiated power
2.1 Matched TL

We calculate in this section the power radiated from a makgfes-
eral Quasi-TEM two-conductors TL insulated in a dieleatniaterial
of any cross section, as shown in Figure 1, carrying a forwanze
described by the current

I(2) = ITe 952, 1)

where —L < z < L. As shown in Appendix B (similarly to [3]),
for the purpose of calculating far fields, any general cressicn,
can be explored by its equivalent twin lead representatiamwa in
Figure 2.

The free currents in the TL line conductors and longitudinal
(z directed) polarisation currents define the separatioraaéstd
between the conductors in the twin lead representation BE2D),
and define thez component of the far potential vector computed
in Eq. (B.38). The free termination currents of the TL and the
transverse polarisation current density, represented dheat ofz
directed surface polarisation current density, in the twin lead
representation define thedirected component of the far potential
vector computed in Eq. (B.43).

We remark that the results obtained in Appendix B have bekn ca
culated in spherical coordinates, where the distance frenotiginr
satisfiescr > kL, 2L being the length of the TL, see Figure 2. This
means that all the following results, based on Appendix Bluite
the effect of the terminations, no matter how Bif is. Hence, the
limit kL — oo, does not describe an infinite TL, but rather a finite
TL of big electric lengthk L >> 1. This limit will be examined along
this section.

Using the results from Appendix B, we calculate here thel tota
radiated power from the TL. Starting with the contributiohtloe
longitudinal currents, we rewrite Eq. (B.38) in this form

A = NOG(T)F(Z) (97 90) (2)

where

Fiy(0,0) = jk2LdIT sinc[kL(cos 0 — neq)]sinf@cos g, (3)
and the subscriptz) denotes the contribution from thedirected
currents, and- ) is the directivity associated with this contribution.

To obtain the far fields (those decaying likgr), the V operator is
approximated by-jkr and one obtains:

1 P . NP
H = %V X (A.z) = jkG(r)F(,)(0,¢)sinbp  (4)
and the electric field associated with ity = noH,) x T
To calculate the contribution of the transversedjrected cur-
rents), we rewrite Eq. (B.43) in this form
Az = poG(r)F)(0,¢) ®)

where
Fpy = —jkITd2L sinc[kL(cos 0 — neq)](cos 0 — neq/ep) (6)

and the subscripfz) denotes the contribution from thedirected
currents, and',, is the directivity associated with this contribution.
The parametee, comes from defining the polarisation currents
as(eeq — 1)/ecq times the displacement current, and as explained in
Appendix C, the rano% represents the average projection
factor of the polarlsatlon current elements on the majrais - the
axis with respect to which the twin lead model has been defiseel
Figure 2). In cross sections having a transverse E field mairthe
« direction the projection factor is close to 1, herge~ e.q, and in
the opposite extreme casg ~ 1 (negligible polarisation currents),
so thatl < ep < €eq = ngq. As evident from Eq. (6)¢p always
appears in the ratioeq /ey, we therefore use the definition

@)

T = Neg/€p,
so that

1/Neq <7 < Teg. ®)
We may therefore use = ng,, so that the powet: satisfies—1 <
a < 1, but as explained in Appendix C, the equality case 1 is
not physical, so it is considereazhly in the context of “ignoring the
transverse polarisation”.

To obtain the far fields, we usd ;) = %V x (AzX) and the
identityT x X = cos 6 cos p@ + sin ¢, getting

H(,) = —jk[cos 0 cos pp + sin npé\]G(T)F(I) 9)

and the electric field associated with itHs,y = noH,) X T
Now summing Egs. (4) with (9) we obtain the total far magnetic
field
H" = — k2G(r) I d2L sinc[kL(cos § — neq)]
(10

and the electric fieldE™ = nyH™" x T. We use from here the
superscript “+”, because those results are for a forwardewahe
Poynting vector is

_n0k4|1+|2d2L2

[6 sin p(cos 6 — T) + @ cos p(1 — T cos §)]

2 2
St = no|HT| p sinc”[kL(cos 6 — neq)]
[sin? p(cos 6 — )2 + cos® (1 — Tmcos 6)?],
11)
and the total radiated power is calculated via
2 e
Pt = J J sin §dfdpr® ST (12)
o Jo

We remark thatfﬁ” depsin? ¢ = jgﬂ dypcos® p = 7, so that the
radiated power is given by the single integraléinAfter changing

variable:y = — cos 6, one obtains
1
P, =60 Q(kd)2|[+|2J 1 dy (kL)? sinc?[kL(neq + y)]

(A +7)(1+y%)/2 + 2my] (13)
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The integral is carried out analytically, resulting in arpesssion
which is very big, and therefore we introduce some defingtiofle
define the following function arguments:

a4 =2kL(neq + 1) ; a— = 2kL(neq — 1), (14)
Furthermore, we define
Q= coslar) cose) Ly sial)  (15)
a4 —
W=t "L Gigay) - Cifa)] (16)
Neq —

whereSi and Ci are the sine and cosine integral functions respec-
tively. The solution of theg1 + yz) part in the integral in Eq. (13),
without the prefactof1 + 722)/2, is given by the functior; :

2n?

5 = T + k:L(niq +1)Q — negW—

Ngq —

Zl (kL, neq) =

sin(a+) — sin(a—)
4kL

and the solution of thg part in the integral in Eq. (13), without the
prefactor2m, is given by the functior¥, as follows:

(17

—Neg
n2q —
So the solution of the whole integral is described by the tionc
Z(kL,neq,m)

Zo(kL,neq) = — kLnegQ + W/2. (18)

1+ 72
Z(kL, neq, 7) = +”

Z1 +2nZs. (29)

The behaviour oZ (kL, neq, m) as functlon ofthe TLlength= 2L
in units of the free space wavelength= 27 /k is shown in Fig-
ures 3-5 and referred to hereinafter. Looking at the figwesajnder-
stand that asieq is bigger, the functiorZ (kL, neq,n) decreases,
while for a givenneq, bigger transverse polarisation currents (bigger
ep, hence smaller), further decreas& (kL, neq, 7).

From (13) and (19), the expression for the radiated power is

Pl =600t 2(kd)?Z(kL, neq, ) (20)
The radiation pattern function is calculated from the rhgdiint-
ing vector (Eq. (11)) and the total power in Eq. (20), using =
4rr?ST /P which comes out

DT (6, ) = 2sin®[kL(cos 6 — neq)]
sin? @(cos 0 — )2 + cos? (1 — T cos 0)?
Z(kL,neq,T)(cos 0 — neq)?

fower relative to the forward wave propagat

(21)

and the radiated

power (PT = |IT|?Zy) is given by
P, 600
];fl =7 = (kd)?Z(kL, neq, 1), (22)

The expressions for the radiated power and radiation paster
complicated (certainly relative to the free space case §Bl it

would be of interest to compare them to the free space case and

determine some limits, in the following subsections.

2.1.1 The free space limitIn this limit n., = 1, and alsaz = 1,
according to Eqg. (8). Se+ = 4kL, a— =0 andZ in Eq. (19) is
71 + 275, resulting in

2 sin(4kL)

—Neg
= + 2kL W — 2 —2kLQ + W,
neq 1 @- 4kL ngq -1 Q
(23)
We note that
2
2ne,é —Meq _ 9 Neg(neqg — 1) 1 (24)
ngg — 1 (neq — 1)(neq + 1)
for neq — 1, so we recover the free space formula for
Z(kL,neq = 1,m=1) = 1 —sinc(4kL), (25)
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Fig. 3: Z from Eq. (19) as function of the TL line length in units
of wavelengths, fole = negq, i.€.€p = 1 and for values ofieq = 1,
1.25 and 2. The asymptotic values for along TL are 1, 0.79 ar@40
respectively (see Eq. 29), and those asymptotic values teen2l/3,
for big neq, according to the case = neq in EQ. (32).
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Fig. 4: Same as Figure 3, only far = 1, i.e.¢p = neq. The asymp-
totic values for a long TL are 1, 0.56 and 0.23 foi; = 1, 1.25 and
2, respectively (see Eq. 29), and those asymptotic valuess tio 0,
for big neq, according to the case # neq in EQ. (32).

p~"eq
‘ ‘
Ngg=1 B —
12 Neg=1.25 —— |
neq:2 _
l L _l
N 08 g
=
S
S 06 4
3
04 | :
02 H E|
0 ‘ ‘ ‘ ‘ ‘
0 1 2 3 4 5

I\

Fig. 5: Same as Figure 3, only for = 1/neq, i.€.€p = €eq = n2

The asymptotic values for along TL are 1, 0.5 and 0.18fgr= 1
1.25 and 2, respectively (see Eq. 29), and those asymptalties
tends to 0, for bigheq, according to the case # neq in Eq. (32).

shown in blue colour in Figures 3-5, see [3]. The limit of the
radiation pattern is

sin?[kL(1 — cos )]
(1 — sinc(4kL)) '
which remains only a function df, recovering Eq. (12) in [3].

DY (0,0) =2

(26)



2.1.2 The limit of a long TLIn the free space case the limit for a

long TL (kL. — oo) is simply Z = 1. In our case this limit depends

on neq andn. For kL — oo, a4 anda_ both go toco. The Ci

function goes to 0 for large argument, therefore Eq. (16)iced to

In Teq + 1,
Neq — 1

W —

27)

The function@ — 0, but here one has to be careful, because we
need the limit ofkLQ in Eqgs. (17) and (18). Th&i function for
large argument behaves like:

k!

xk

cos x sin x

Si(z)

(28)

i h
- ok
=1 ¥
k odd

oo
>
k=0

k even

s
2 x x

and from here it is easy to find th@ decreases faster théhL) ",
hencekLQ — 0. Also[sin(a+) — sin(a—)]/(4kL) — 0for kL —
oo, we therefore obtain after some algebra the following limitZ:

Neq

Z(kL — 00,1¢q,T) =— [(1 + 1) neq — Qﬁ] +
ngg — 1
Neg + 1
Neq —
Those limits can be calculated for the cases shown in Figgi®es
and yield 1, 0.79 and 0.704 far = neq (Figure 3), 1, 0.56 and 0.23
form = 1 (Figure 4) and 1, 0.5 and 0.18 far= 1/neq (Figure 5),
for the values ofieq = 1, 1.25 and 2, respectively.

As shown in [3], this limit represents the radiation of a lohg
carrying a forward wave, so that:

P4 ong 11y = 60 QI [* (kd)*Z(kL — 00,n¢q, 7). (30)

which also corresponds to twice the power radiated from a-sem
infinite TL. This means that the power radiated by a semi-it&fin
TL carrying a forward wave is

2 2 —
P semiinfinitey= 30 QT T |*(kd)* Z(kL — 00, neq, M),
see Figure 9in [3].

[ﬁ ~ eg(1 +72) /2] In (29)

31

2.1.3 The limit of big relative dielectric permittivity, for long
TLThis limit is discussed in the context of a long TL, so the tiofi
(29) forneq — oo depends om, as follows:

2/3
0

T = Negq

1/neq < T < neq
(32)

so that there is a singular case of “ignoring the transveosariga-
tion”, for which the limit is 2/3, as shown in Figure 3, and famy
practical case the limitis 0, meaning that the radiated poarishes
for strong relative permittivity of the dielectric insutaitneg — oo
(see Figures 4 and 5).

Z (kL — 00,Neq — 00,T0) = {

2.2 Generalisation for non matched TL

We generalise here the result (20) obtained for the lossadinite
TL carrying a forward wave to any combination of waves, apfes:

I(z) =ITTe % 4 1= eIk? (33)

wherel T is the forward wave phasor current, as used in the previous
subsection and ™ is the backward wave phasor current, still defined
to the right in the “upper” line in Figure 2.

The solution for the general current is obtained as sup#ipos
of the solutions for the fields generated by e 7% and I~ e/
The solution for the backward moving Waﬁe’ejkz, can be found
by first solving for areversed: axis in Figure 2, i.e. @ axis going
to the left, and replacing in the solution (10 — —I~, so one
obtains

H = — k2G(r) (=1 )d2Lsinc[kL(cos 8’ — neq)]

[5’ sing’(cos ' — 1) + @ cos ' (1 —cos6' @)  (34)

where#’ and ¢’ are the spherical angles for the reversedxis.
Now to express the solution for the backward wave in the oabi
coordinates, defined by the right directegxis, one has to replace:
0 =7n—0, o =—¢, and therefore alsd = —0 and@g’ = —,

and sum (10) with (34), obtaininl = H* + H~
H=—k*G(r)2dL{O[ITA_ + I A+ @[ITB_ + 1 B.]},

(39)
where we used the abbreviations:
A4 = sinc[kL(cos 0 & neq)](cos 8 £ 7) sin ¢
B4 = sinc[kL(cos 0 £ neq)](1 £cosf) cosp,  (36)

from which the electric field i€ = noH x T, so that the Poynting
vector isS = no|H|?

ktd*r? _
S = %T{uﬂﬂﬁ + B2+ |1 2142 + B3+
QR{ITI*}A_AL + B_B4]}. (37)
We calculate the radiated power using Eg. (12), and obtain
PJ;d + P;ad + Prad mix (38)

T
wherePTjE 4 are the powers radiated by the individual forward and
backward waves, and are given by (20), using the adequatencur

P = 60 Q(kd)* | IF*Z (KL, neq, ), (39)

T
andP,,q miz is the power radiated by the interference betwgén
and/ ", and is given by

Prad miz = 60Q(kd)>R{IT T} [1 - ﬁQ] Zomin

Prog =

(40)
where

1
Zmiz = cos(2kLneq) |1 — MW} n

2
Meq £ 1/Meq G 9k Lneg)[Silas) — Si(a_)] — sine(2kL).
(41)

The arguments+ anda— are defined in Eq. (14) anid is defined
in Eq. (27).

Unlike the free space case [3] in Whiéh ;4 1, = 0, for TLin
insulated dielectric the interference between the wavetriboites
to the radiation, and of course the contribution vanishethénfree
space limit for whichiw = 1. To be mentioned that = 1, may also
occur in the insulated cased; > 1) if ey = neq.

In the next section we validate the analytic results obthiime
this section, using ANSYS commercial software simulatiom a
additional published results on radiation losses from TL.

3 Validation of the analytic results
3.1 Comparison with [11]

In 2006 Nakamura et. al. published the paper “Radiation &ttar-
istics of a Transmission Line with a Side Plate” [11] whicteinds to
reduce radiation losses from TLs using a side plate. Thepdade is
a perfect conductor put aside the transmission line, tdeigaposite
image currents, and hence reduce the radiation.

The authors first derived the radiation from a TL without the
side plate, for the free space case, and also for TL insidedie
tric, but the dielectric has been taken into account in wbaterns
the propagation constamt = nqk only, ignoring the polarisation
currents.

Therefore for the sake of comparison with [11] we have to use
ep = 1, hencen = neq in all our results.

We first remark thatly in [11] is a forward current, and from
Eq. (19) in [11], it is evident that they used RMS values. Hehge
in [11] is the equivalent of oufl *|. Also they used (capital for
the equivalent refraction index, called in this worlk, .

In [11] they did not obtain analytic expression for the réidiaas
function of TL length, but they did obtain analytic express for
the long TL limit, with which we compare here our results. E29)
simplifies forn = neq to:

ngq—llnneq+1

2

Z(kL — 00,MNeq, W = Neq) = ”gq — Teq
'fleq -1
(42)
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so that the power radiated by a semi-infinite TL in Eq (31) is:

2
+ 202 ) 2 Neg =1 neg +1
Prad (semi-infinitey= 30 /1| (kd) {”eq — Teg eqz In n:z —
(43)

which isexactlywhat they called “the radiated power from the input
end (or output end) alone”, given in Eq. (30) in [11] (notetttey
used the distance between conductts corresponding to oud,
from there the factor 4).

Also note that the limit ofZ in Eq. (42) forneq — oo is 2/3,
according to the case = neq in Eq. (32). This may be confirmed
by comparing Egs. (31) and (32) in [11].

Next we compare the radiation patterns obtained in Figuré 5 o
[11], with ours. In [3] we compared the free space case in Ipane
(a), and here we compare our result (Eq. (21) witk= neq) with
panel (b) of Figure 5 in [11], showing the radiation pattefoisa
TL of 1 wavelength, for different values of.q. This is shown in
Figure 6. Itis worthwhile to remark that the radiation pattéeq. 21)

Fig. 6: Radiation pattern calculated from Eq. (21) with= neq for
TL of 1 wavelength for the cases.; = 1, 1.25, 1.5, 1.75 and 2.
They are identical to the parallel cases shown in Figure &(f)1].
Note that the definitions of the and z axes are swapped in [11]
compared to our definitions, we therefore showed them in &m-or
tation which makes the comparison easy (i.e. pais is oriented
in the plots in the same direction as theiaxis).

does not depend on the distance between the condutt@s2h
in [11]), hence the annotation &f/\ = 0.1 in Figure 5 of [11] is
redundant, and probably has been added to the caption lecttas
authors computed the radiation patterns numerically:joxr = 0.1,
without deriving an analytic expression.

Next, we compare our results with Figure 6 in [11], which is th
numerical integration of Eq. 20 in [11] for the cases, = 1 and 2

two cases shown in the figure a&3¢.75 [W] and 94.75 x 0.704 =
66.72 [W], respectively. The results of Eq. (20) fer., = 1 and
2, overlapped on Figure 6 in [11], have been shown in Figuré 2 o
[4] (and they are identical in shape to the corresponding<as
neq = 1 and 2 in Figure 3, up to the constaht. 75 [W]).

In the next sections we take some examples of cross section
geometries on which we apply the analytic result Eqgs. (222) (
or (38) and compare the results with simulation results ofSX1S-
HFSS commercial software, in the frequency domain, FEM-tech
nique.

3.2 Comparison with ANSYS simulation results - Example 1

In this example we use the cross section shown in Figure ghki
similar to the one used in [3], only insulated in a dielectniaterial.
We performed an ANSYS-HFSS cross section analysis at the fre

y

Fig. 7: The cross section consists of two circular shaped ideal con
ductors of radius = 1.27 cm (dark blue), the distance between their
centres being = 3.59 cm. The dielectric insulator (pink) is circular
with radius2a for |z| > s/2 and rectangular in the region| < s/2.
The relative permittivity of the dielectric insulatordgs = 3.

quency 240 MHz. From this analysis we obtained the propagati
constants = neqgk = 8.1 [1/m], establishing the equivalent refrac-
tion indexneq = 1.613. An arrow plot of the transverse electric field
E is shown in Figure 8.

20k -

10

,,,,,,,

y [mm]
o

-10

,,,,,,,

20 e N e 4

Fig. 8: Arrow plot of E¢ for the cross section shown in Figure 7.

From this analysis, using Egs. (B.22), (B.25 and (B.26) omésfi
thato = —0.76 x 10~2, confirming Eq. (B.27) and we obtain the

(namedK = 1,2) where the solid line represents the free space caseseparation distance in the twin lead representatiea 2.46 cm

(neg = 1) and the dashed line represents thg = 2 case. To cal-
culate the result in Figure 6 of [11] they uségl = 1A, hence we
set|IT| = 1A in Eq. (20).2h is the distance between the conduc-
tors in [11], equivalent tal in this work, and they usetA = 0.1,
therefore(kd)? = (4wh/\)? = 1.5791 in Eq. (20). Hence the pref-
actor60 Q(kd)?|Io|> = 94.746 [W]. The asymptotic value of in
Eq. (42) is 1 forneg = 1 and 0.704 forneq = 2 (as shown also
in Figure 3), therefore the asymptotic power fof. > 1, for the
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(close to the distance obtained in the free space case $3].c2n).

Next using Eq. (B.37) we obtair, = 1.73, so thatn =
neq/€ep = 0.93. From the cross section analysis we also obtain the
value of the characteristic impedangg = 65.5€2, which is very
close to what we obtained in [3] for a similar configuratiorb BX?
divided by neq = 1.613 (see Eq. (A.13)). This confirms that the
electric size of our cross section is small (see discusdidineaend
of Appendix A).



We summarise here the parameters used in Eqg. (22) for theconductors, as we shall see in the following cross sectiatysis.

comparison with simulation:
d = 2.46cM neq = 1.613 7= 0.93 Zy = 65.5Q (44)

The simulation setup is shown schematically in Figure 9. The
is ended at both sides by lumped ports of characteristic diapee
Zport = 5082, but fed only from port 1 by forward wave volt-

age Vp“fm =1V, so the equivalent Thévenin feeding circuit is a

+ . - - .
generator onme_t in series with a resistancg,or¢.

Zport
2\/;(')rt Port 1 Port 2 [:]Zport
: ' : >z
-L 0 L

Fig. 9: Simulation setup for obtaining x 2 S matrices for different

TL lengths.
We obtained from the simulation S matrices defined for a char-

acteristic impedanc&,+ at both ports, for different lengths of the
transmission line (similarly to [3]). Following the sameopedure
described in Section 3.1 of [3], (based on [6, 13—15]) we iakth
from each S matrix the delay angte of the TL, from which we
calculate the simulated relative decay of the forward wanegy

+

rad __

P+
In Figure 10 we compare the analytic result for the relativegr
radiated by a forward wave in Eq. (22) with the result in Ech)(4
obtained from ANSYS-HFSS simulation, at the frequency 24@zM
The result shows a very good match between theory and simlat

—2Im{e}. (45)

0.008

Theor)‘/
Simulation  *
0.007 |

0.006 ]
0.005 ¥

0.004 b

Prag/P”

0.003 | B

0.002 b

0.001 | b

I\

Fig. 10: Relative radiation losseB, /P : comparison between
the analytic result in Eq. (22) and the ANSYS-HFSS simufatio
result (Eq. (45)) for two parallel cylinders TL. The horizahaxis

is the TL line length in units of wavelengths.

with an average absolute relative error of 4%.

For this cross section is 0.93, hence close to 1, so the interfer-
ence term (Eq. (40)), which scales like- 72 is small. We therefore
do not simulate it for this cross section example, and we sloaitt
in the next examples, as follows.

3.3 Comparison with ANSYS simulation results - Example 2

In this example we use a microstrip cross section shown iarEig1.
The width of the “plus” conductor isv = 3.4 mm, the distance
between the conductorsds= 1.52 mm and the relative permittivity
is e, = 3.5. We avoided the conventional notatidrior the distance
between the conductors, becautés reserved for the equivalent
distance in the twin lead representation, computed fromctbses
section analysis (see Appendix B). However, as expectedho
microstrip case it comes out thdtequals the distance between the

Using the microstrip formulae [6], we obtain:

V<

Fig. 11: Microstrip cross section: the ground conductor (of width
wi — 00) is atz =0 and the “plus” conductor, of widthv =
3.4mm, is located at: = s = 1.52mm. The conductors are shown
in dark blue and the thickness of the “plus conductor” igh7(not
mentioned in the figure). The dielectric insulator (pinkpiselative
permittivity e, = 3.5.
er +1 " er — 1

2 24/1+ 12s/w
sothatneq = (/€eq = 1.657. The characteristic impedance for>
s is given by (see [6])

Zy =

= 2.7455

(46)

€eq =

0
Neqw/s + 1.393 + 0.667 In(w/s + 1.444)]

= 50.55 2

(47)

Because of the “infinite” ground conductor in the definitioh o
the microstrip, the theoretical solution implies 0 fieldgtie region
x < 0, and of course perpendicular E field and parallel H field on the
planez = 0. We need to run simulations to determine the fields’
structure in the cross section and to calculate the S paeasnfeir
different microstrip lengths, for finding the radiation $es as func-
tion of the TL length, as we did in the previous example. QYear
simulations cannot reproduce fields close to @ at 0, unless one
chooses a very big value far;, consuming a lot of time and mem-
ory. For values otv; of the order ofw (like 2w or 3w), simulations
on the configuration in Figure 11 will suffer from significanaccu-
racy, not being able to assure a perpendicular E field andalglar
H field on the plane: = 0.

The method to overcome this is to use an “imaged” configumatio
shown in Figure 12. The imaged microstrip configuration essu

TX

—W—

y
—

- Wl >

Fig. 12: Imaged microstrip cross section: the ground conductor at
x = 0 has been eliminated and the conductor and dielectricat)
have been imaged to the region< 0. For the imaged configuration,
w1 does not need to be very big.

by symmetry perpendicular E field and parallel H field on thenpl

x = 0, independently of the size af;. It appears that increasing
w1 above the valu@w almost does not change the results, hence the
choicew; = 2w is very good.

We also remark that for a given forward wave currént, the
imaged configuration carries twice the power of the origoaifig-
uration, implying a value of characteristic impedance \hictwice
the value in Eq (47), i.e.

20 (imaged)= 50.55 x 2 = 101.1§2 (48)

Also, for a given forward wave curreiit, the imaged configuration
radiates twice the power of the original configuration, sat tthe
relative radiated power in Eq. (22) is unchanged.
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Like in the previous example we perform a cross section aigly
and Figure 13 shows an arrow plot of the transverse electid fi
Ep.

—z—

///1\

Sc-ov 000
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—
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AN —

. = o
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Fig. 13: Arrow plot of E1 for the cross section shown in Figure 12.

From the cross section results, using Egs. (B.22), (B.28) an
(B.26), we find that the weight of the longitudinal polarieatis neg-
ligible (as in the previous example) and one obtains theradpa
distance in the twin lead representatiba- 3.04 mm. As mentioned
previously, we expected this separation distance to bel égquhe
distance between the conductors, and indeed it cameo(see
Figure 12).

From the cross section analysis we also obtain the value of

the characteristic impedancg, = 99.372 (very close to this in
Eq. (48)) and the equivalent dielectric permittivity, = 2.7 (very
close to this in Eq. (46)), SBeq = |/€eq = 1.64. Using Eq. (B.37)
we obtaine, = 2.7, which equals in this case tQ,, so thatn =
1/neq = 0.6.

We summarise here the parameters for this cross section:

d = 3.04mm neq = 1.657 m = 0.6 Zp = 99.37C2 (49)

We first compare with ANSYS-HFSS simulation the power radi-
ated by a forward wave, relative to the power carried by theewa
(Eq. 22), following the same procedure described in theipusv
example, (based on Section 3.1 of [3]) and using the samerstiee
setup in Figure 9. We obtained S matrices for different TLgtln
to calculate Eg. (45) which is compared with Eq. (22) for the
microstrip. The comparison is shown in Figure 14. The reshuivs

0.009 | Theory

* Simulation  *

0.008 B
0.007 q
0.006 £ —

0.005 b

Prag/P”

0.004 b

0.003 b

0.002 b

0.001 | B

25
I\

Fig. 14: Relative radiation IosseE’jd/P““: comparison between
the analytic result in Eq. (22) and the ANSYS-HFSS simufatio
result (Eq. (45)) for the (imaged) microstrip TL. The hontal axis

is the TL line length in units of wavelengths.

a very good match between theory and simulation with an geera
absolute relative error of 3.2%.
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For this cross section = 0.6 (far from 1), it is therefore expected
the interference term (Eq. (40)) to be substantial. We busiimula-
tion setup shown schematically in Figure 15 to simulate ffece

Zport
+
2Vp0rt Port 1
+ + t+ > Z
-L 0 L

Fig. 15: Simulation setup for obtaining; for different TL lengths.
of the interference term. The TL is fed at= —L by a lumped
port of Zport = 50 Q with a wave ofvpﬁ,.t =1V so the equiva-

lent Thévenin feeding circuit is a generator2df,© , in series with
aresistance,o.+ (like in the setup from Figure 9), but the right side
atz = L is left open.

Using as first approximation the lossless TL theory, the open
end implies)I ™| = |I~|, and the following connection between the
phases of * and~

Ite 8L L =Pl — (50)

from which
R{ITT*} = —|I"|* cos(26L). (51)

This relation is used in Eq. (40) to calculate the interfeseterm
Pyad miz CONtribution in Eq. (38). The value 6f | (or |1~ |) to be
used for the term?fld in Eqg. (39), in terms on“;Tt is given by

|V+7't|

= (52)
\/ 28 cos2(2BL) + 22,,.,5in*(26L)

Note that the values in Egs. (51) and (52) are calculatedratgha
for each value of_, for the comparison with simulation.

By conservation of energy, the power radiated according to
Eqg. (38), must be equal to the power of the forward wave coming
from port 1:|fo),_t|2/Zport, multiplied by1 — |S11|2. In Figure 16
we compare the analytic result from Eq. (38) relative to tbet p
power:

1=

Prad
Vobrt|?/ Zport

with the values ofl — |S1; |2 obtained from the ANSYS-HFSS sim-
ulation for different TL lengths. The result shows a very gocatch

(53)

0.03 T
Theory
Simulation ~ *

0.025 —

0.02 b
k=
+n_8

\E 0.015 b
o

0.01 + 1

0.005 - q

0 | | | | |
0 0.5 1 1.5 2 25
/A

Fig. 16: Relative radiation losses calculated from Eg. (53), com-
pared with1 —|S;;|? obtained from the ANSYS-HFSS simula-
tions for the (imaged) microstrip TL, for different TL lerdgt The
horizontal axis is the TL line length in units of wavelengths
between theory and simulation with an average absolutéivela
error of 1.8%.



3.4 Comparison with ANSYS simulation results - Example 3

In this example we use the same microstrip as in the previois s
section shown in Figure 11, but having a high dielectric tieta
permittivity e, = 10.2. All other parameters are identical and for
the simulation we use the imaged configuration shown in leidar.

Using Egs. (46) and (47) we obtaip; = 7.42 (i.e. neq = 2.72)
and Zy = 30.74 2, but for the imaged configuration it is twice
20 (imaged)= 61.48 0.

For the specification of the transverse polarisation ctsrere
introduced a new definition af,, which basically would mean the
usualeeq if all the polarisation current elements would be in the
same direction (as approximately occurs in a microstrigwever

in the general casep < ecq, Where the relatio Eépjgﬁp repre-
. . . \€q €q

sents the average projection of the polarisation curreamehts on
the main direction of the resultant contribution (set withtoss of

generality as the direction).

We repeat here the comparisons from the previous subsection

(Figures 14 and 16), for the high dielectic permittivity.€eThesults

are shown in Figures 17 and 18. They yield a good match between

theory and simulation with average absolute relative erofr3.3%
and 5.7% respectively.
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Simulation  *

0.005 | b
0.004 b
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Fig. 17: Same as Figure 14, with = 10.2.
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Fig. 18: Same as Figure 16, with = 10.2.
4 Conclusions

We presented in this work a general algorithm for the analyti
calculation of the radiation losses from transmissiondioé two
conductors in a dielectric insulator. This work is the gafisation
of [3], which deals with TL in free space, and similarly to [3{e
assumed a small electric cross section, so that the TL sar@iasi-
TEM mode, which behaves similar to TEM.

We derived the radiation losses of matched TL (carrying glsin
forward wave) and generalised the result for non matchecaairy-
ing any combination of forward and backward waves. Unlikéhie
free space case [3], the interference between the forwatdack-
ward wave have a non zero contribution to the radiated poavet,
we successfully validated our analytic results by commatirem
with the results of ANSYS-HFSS simulations for both matchaed
non matched TL. Also, we compared the matched case withijiil],
had to neutralise the polarisation currents for the sakéiefdom-
parison (given the fact that that [11] did not include thenthiair
calculation).
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6 Appendices
6.1 Appendix A: Cross section analysis of Quasi-TEM mode

We perform in this manuscript Quasi-TEM cross sections yanal
ses, to obtain characteristics which affect the radiatimtess of
dielectric insulated TL. We therefore summarise in this eaajix
some properties of the cross section solution for a geneisd of
hybrid TE-TM fields [5, 6]. The time dependence:i4?, so that the
derivative with respect to time of any variable is a multiplion by
Jw.
We call the longitudinal £ directed) fieldsE. and H., and
the transversex( and y components)E; and Hp. The trans-
verse “nabla” operator is nameW = 70, + ydy in Cartesian
coordinates. One looks for a forward wave solution, havimg
dependence of the form
—I8% implying: 9. = —jB (A1)

on any variable. This requirement implies the solution oé th
Helmholtz equations for the longitudinal fields, and lineefa-
tions connecting the transverse fielg andH with V- E. and
VrH,, seel5, 6].

For a guided propagation mode, the longitudinal fields are 90
degrees out of phase relative to the transverse fields, $atlya
transverse Poynting vector is pure imaginary, which metaatsthere
is a standing wave in the transverse direction and the onlgmergy
is flowing in the longitudinal direction [5, 6].

It is therefore convenient to scale the phase of the crogforec
solution so that the transverse fields are real and the ladigil

e
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fields are pure imaginary, so that:

Er=Err; Hr=Hrp (A2)

and

E. EjEz,I > H, = sz,I7 (A3)
where the “R” and “I” subscripts indicate real and imaginpayts,
respectively. From the cross section solution one obthieQuasi-
TEM mode propagation wavenumbei(see Eg. (A.1)), from which
one defines the effective refraction index of the solutien via

(A4)

is the free space wavenumberbeing the free space speed of light
in vacuum. This equivalent refraction index satisfles neq < n,
according to “how much” fields are in the dielectric and “howah”
in the surrounding air, whene = /€, is the refraction index of the
dielectric material.

To be mentioned that such mode is called Quasi-TEM, because i
behaves close to TEM, in the sense that the transverse Hgldmd
H are dominant relative to the longitudinal fiells and H . This
may be symbolically written as

ET7(770/neq)HT >>EZ7(770/neq)HZ7 (A.5)

in the averaging sensed = 377¢) is the free space impedance). As
smaller the electrical size of the cross section, the abomdition is
more accurate.

Now examining the surface free current continuity on onehef t
conductors in Figure 1 (say the “plus” conductor having thetour
c1), we obtain

B =neqk, where k=w/c

8tps + 0:Js 2 + 8(:1Js c1 =0 (A6)

whereps is the free surface charge adg. and.Js .; are the longi-
tudinal and transverse components of the free surfacertutysing
O = jwandd; = —jB (Eq. (A.1)), we get

jwps - jﬁjsz + 8(:1Js cl — 0 (A7)

Clearly the free transverse surface currdpt; which is propor-
tional to H . is negligible relative to longitudinal surface curreht.
which is proportional td 1 (see Eq. (A.5)). But for now we do not
need this condition, because the last term in Eq. (A.7) Yesisfter
integrating around the contogigl, obtaining

jwpy — jBIT =0, (A.8)

wherep; is the charge per longitudinal length unit. We shall iide

VT for the forward current and voltage waves, respectivelydes

with a forward wave, so in principle, all quantities shoulave a
“+” superscript, but it would be too cumbersome). Here we thge
capacitance per length unit defined yia= CV *:

wCVT = pIT, (A.9)

and for this we do need condition (A.5), because the potetiffar-
ence between the conductdvs™ has a meaning only if its value
[ Er -dl is independent of the integration trajectory, and this is
strictly correct only ifH, = 0.

Supposing condition (A.5) is satisfied and using Eq. (A.4)l the
definition of the characteristic impedangg = V* /1T, we obtain

fteq (A.10)

cC’
and comparing it to the “telegraph model” definitigiy = \/L/C,
L being the inductance per length unit, one obtains

VLC = neq/c (A.11)

Dealing with dielectric materials, the inductance per tenigth L is
the same as the free space inductance, we therefore corfoune
Eqg. (A.11) thatC is proportional tmgq = €eq, SO that

Zo

C = €eqCree space (A.12)

From Egs. (A.10) and (A.12) it results th# is inverse proportional
t0 neq, SO that

Zoy = Zfree spacéTieq (A.13)
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We may understand from this analysis that the relation betvze
andk, namelyn., describes in the DC limit the connection between
the capacitance per unit length (or the characteristic dapee)
with dielectric and the parallel value in free space acecwdio
Egs. (A.12) and (A.13). Therefore the relation betwegmand k
keeps linear as long as the electric size of the cross sastemall,
and may deviate from this relation for higher frequencies.

6.2 Appendix B: Far vector potential of separated
two-conductors transmission line in twin lead
representation

In this appendix we calculate the far magnetic vector p@éefr
a general TL insulated in a dielectric material of relativelettric
permittivity e, as shown in Figure 1.

In spite of dealing with dielectric insulators on has to uke t
regular free space Lorenz gauge [12], in the frequency domai
JwVvV

v.A+El —o, (B.1)
C

obtaining the following wave equations for the magnetictoec
potential A and the scalar potenti&f [12]:

(V2 + 8 ) A= —poder 3 (V°+K)V = ~pei/co. (B2)
where
Jef =+ jwP +V XM ; pef=p—V - P, (B.3)
J andp being the free current and charge densities, respectively,
P =¢y(er — 1)E (B.4)

is the electric polarisation field anhI is the magnetisation field
which is 0 in our case. We remark thdtg and pe satisfy the
continuity equation

V - Jeit + jwpeit = 0, (B.5)

which holds separately for the free and polarisation ctslogerents.
We see thapes can be calculated frorles, the same a¥” can be
calculated fromA using (B.1). This means that we have to solve
only for A in Eg. (B.2), as usually done in radiation problems [5, 7—
10]. Its formal solution, for a TL from-L to L is the convolution
integral

L
A(x,y,z)zuoj dz' J] da:/dleeﬁ(xl7yl7z/)G(R) (B.6)
—L

TL cross
section

e—jks

whereG(s) is the 3D Green'’s function and

4rs

R=\/(x—x’)z+(y—y’)2+(z—z’)2. (B.7)

We remark that (B.6) is the potential vector due to the cusratong

the TL, and the contribution of the termination (source amad)

currents [3] are calculated at the end of this appendix.
According to (A.1), we use

Jeri(2' y',2) = Teri(2', y)e 777, (B.8)
and approximatingz in (B.7) in far field in spherical coordinates to
R=1r— (2'cosp+ 3y sin ) sinf — 2’ cos (B.9)
we rewriteA in the far field
A =poG(r) JL dzlejkzl(cose_ne”

H dxldy/.]eff(x/, y/)ejk sin 0z’ cos p+y’ sin el (B.10)

TL cross
section

At this point thez’ integral can be separated from the cross section
integral. Integrating on’ we obtain

A = puoG(r)2LsinclkL(cos 8 — neq)|Q(0, ) (B.11)



wheresinc(z) = sinx/x andQ(0, ¢) is For @ pol in Eg. (B.16) we use the longitudinal polarisation current
density jwep (e — 1) E, (see Figure 1), which according to (A.3)

Q= H da'dy Je(a', )&l F 501" cos oty sine] (g 19 can be written as-weo (e, — 1)E, 7, and the integration is only on
TL &ross the dielectric region. ClearlyZ. being a solution of the Helmholtz
section equation, the integral on the TL cross section vanishes f@nithe

so that the direction oA is according to the direction @. twin lead representation, we obtain

Considering the higher modes to be in deep cutoff, so that ;o oy,
ka', ky' < 1 (small electric cross section), and defining the radial ~ @z pol = H dz'dy [~weo(er — 1)]E; jksin 0z’ cos ¢,

cross section unit vectgs(y) = X cos ¢ + ¥ sin ¢ and the radial dielectric
cross section integration variables vectdr= z'X + 3’y we may region (8.23)
ite Eq. (B.12 . . ’
rewrite Eq. ( )as which can be written as
Q= J] dx/dy/Jeﬁ[l + jksin oﬁ((p) . pl] (B.13) Q. pol = jksin 9a1+d1 Cos (B.24)
Teltion where
The strategy to calcula@® is as follows: for components dfe on a = —wey(er — 1) H do'dy' E, H(E, 1)/1+7 (B.25)
which the integraldz’dy’ vanishes over the TL cross section, we 4 ’ '
perform the integral of the component multiplied fysin 0p () - d'reelgi%trﬂ'c
!, as foll - o .
P, as 10lows andH represents the Heaviside step function, limiting the irdem
jksin 0 H dz'dy' Jei [P(¢) - P'], (B.14) the regions in whictE, ; > 0 and
TL cross I d:v'dy'EZJx’
section dielectric
. . . . region
while for components of ¢ on which the integradlz’dy’ is not 0, di = cge T . (B.26)
we neglect sin 0p(¢p) - p’ relative to 1, as follows dieg{mcd“” dy' B, rH(Ex 1)
;o region
H dr'dy Jefr (8.15) Clearly,« being the ratio between something proportionakbitoand
TL cross I't, which is proportional td7r, satisfies
section
For the free space TL [3] we had to deal only with the longibadi lof <1 (B.27)

(? comp.onent) ofA in what concerns t.he TL' currents contribu- (see Eq. (A.5)). Using the above definitions, we sum Eqs.J(Bagd
tion (which were free surface currents in thalirection), and we (B.24) to obtain the totat component ofQ

had transverse components @r y) of A only from the termina-
tions of the TL. In the current case we note tlak contains both Q. = jksin0ITdcos o (B.28)
free longitudinal surface currents and polarisation amtgreontribu-

. . R her
tions (which have both longitudinal and transverse compts)eWe where
therefore deal first with the longitudinal component@f which is d=do +ady = dy (B.29)
written as: is the separation distance between the conductors in theléad
0.=0Q 40 (B.16) representation, analogous to what we obtained in [3]. Focése of
z = Wz free z pob> ) conductors in dielectric insulator this vector separatias two con-

tributions: dy is due to the free currentd; due to the polarisation

whereQ , feeis the contribution of the longitudinal free surface cur- currents andh is the “weight” of the longitudinal polarisation con-

rentsK ., and hence is similar to [3] (so that the solution to Eq. (B.13) . = ) . o ;
has the form (B.14)): télé)u(téog,?g))ut as explained above, this weight is typicaliyall (see

Y Now we calculate the transverse componentQyfwhich under
= jksin@ ~bdc K ! B.17 \ TANISVETS®- :
Q= free = 7k sin 0p(y) ﬂg cKz(c)p'(c), ( ) the twin lead representation simplifies@. (see Figure 2), where
wherec is the contour parameter around the perfect conductors (i.e @« 1S due to the transverse polarisation currents. We thezafee

c1 andes, see Figure 1). Separating the contours and noting that wefOr Jeff x the = directed polarisation current densif,» (and the
deal with a differential mode for which the currents in thedoctors solution to Eq. (B.13) has the form (B.15)):

component of1 parale o the conductors) one obiaths: N (8.30)
Q: free = jksin0I7dg - p (8.18) Tegion”
the forward currenf ™ is where
rr :ﬁ;dclHTH(q) = 7f£dC2HTH(C2), (B.19) _ Jpa = jwPs = jweo(er — 1) Ea, (8.31)
andE,; is thex component o .

It is useful to describe the transverse polarisation cariretthe
do = ﬂgdCHT H(c)p'(c)/IJ“, (B.20) twin lead representation as-ax directed surface current on the
surfacey = 0 (see Figure 2). The polarisation (surface) current is

. o proportional to the displacement surface current:
The vectordy represents the vector distance pointing from the

“negative” conductor to the “positive” conductor in the twiead Jodo = —jwCVT, (B.32)
equivalent (see Figure 2). As in [3] it is convenient to renethes where the minus is due to the fact that the current is in-the

axis to be aligned witllo, so thatdp, = do anddoy = 0, so that  gjirection. Using relations (A.4) and (A.10), this can betteri
(B.18) simplifies to n
Jsdz = —JBI (B.33)

Q. free = jk sin 01 dg cos ¢ (B.21)
. . N Inside a uniform dielectric material the polarisation emtris (e, —
and the expression for the distanggsimplifies to 1) /e, times the displacement current, but having part of the fiislds
in air, it looks like one has to usgeq — 1)/ecq times the displace-

_ / +
do = ﬁ;dCHT 1)z (/17 (B.22) ment current. As shown in Appendix C, due to the fact thatspaft
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the polarisation current elements are in the perpendicyladirec-
tion, if one wants to use the same valued@s defined in Eq. (B.29),
one needs to use a value for the relative dielectric pewitjtin gen-
eral smaller tham.4, which we name;, (the subscript “p” stands for
polarisation), for expressing the polarisation surfaceent:

ep—1

€p
and being a surface current an= 0, one gets the polarisation
current density

(B.34)

JSPJ«': Jsd:m

o = Jspud(y) (8.35)

The value ok, satisfiesl < ¢, < ecq, and Appendix C is dedicated
to explain this connection, the physical meaningoénd its relation
t0 €eq.

Using (B.35) in (B.30), the integraiz’ is carried out from 0
to d, while thedy’ integral yield 1, because of the delta function,
obtaining

d ep—1
Qs = J da' Jspz = dJsps = —jBITdL2—=
0 €p
By comparing (B.36) with (B.30) and using (B.31), one obsaém
equation to calculate, from the numerical cross section solution,
as follows:
ep—1

€p

(B.36)

E B.37
o | @

dielectric
region

where the RHS is positive, because the phas& pfis scaled to
point mainly from the “positive” to the “negative” conducta.e. it
is mainly negative.

At this point we summarise the results for the vector poénti
components contributed by the currents along the TL. Frorm1(B
and (B.28) we obtain

Az = poG(r)2L sinc[kL(cos 0 — neq)|jk sin 017 d cos p,
(B.38)
and from (B.11) and (B.36) we get thadirected contribution. Given
this contribution is from transverse polarisation, we name, po:

-1

Ay pol = poG(r)2L sinc[kL(cos 6 — neq)](—jﬂl+)d€p
€
?8.39)

It is worthwhile to mention that any representation thatpsethe
value ofd(ep — 1)/ep correct, for example replacing by ecq, but
accordingly use a smaller value éffor the transverse polarisation
would be a completely equivalent representation, but weseho
keep the same value dffor representing the free currents and the
polarisation currents (see discussion in Appendix C).

Now we calculate the contribution of the termination cutseto
the potential vector. The twin lead geometry allows us toaisan-
ple model for the termination currents, which are in theirection
(see Figure 2), and their values até T e*77L at the locationsFL
respectively. They result in
d/2 )

dx/eiJBLG(RLg)
—d/2
where the indices 1,2 denote the contributions from theitetion
currents atr L, respectively, (see Figure 2). The distanégsy of
the far observer from the terminations may be expressedierial
coordinates, as follows?; 2 ~ 7 — 21,2 cos§ — ' sin 6 cos p. The
integral (B.40) is carried out fdtd < 1, using (A.4), results in

Aura = 2ol | (B.40)

Ag12= :‘:Mof—kdG(r)e:ijL(CoS O=ncq), (B.41)
The two contributions sumtd,. | + A, 5:
Agtree = poG(r) I d(—2j) sin[kL(cos 6 — neq)],  (B.42)

and we call itA, fee, because the termination currents are free cur-
rents. The total transversedirected potential vector is obtained by
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summing (B.39) with (B.42):
Az =poG(r) 1T d2L sinc[kL(cos 0 — neq)](—jk)

(cos @ — neq/ep) (B.43)

6.3 Appendix C: The physical meaning of ecq, € and the
connection between them

We used in this work a new quantity calleg for the purpose of
defining the contribution of the transverse polarisatioments. This
appendix is dedicated to explain the physical meaning,oénd
show the connection between it ang.

First, it should be mentioned that it is not the polarisatarrent
per se which affects the radiation, but rather the poladsaturrent
elementi.e. dJsp. - See Eq. (B.36). Looking at Eq. (B.37), it is
clear that the value af(e, — 1)/¢p is only a function of the cross
section geometry (whilé is something that we defined in Eq. (B.29)
to formulate the twin lead model).

This means that the only requirement to obtain a correctesxpr
sion for the radiation is to use the correct valued¢f, — 1)/ep,
and we had the freedom to replageby ¢., and determine accord-
ingly a new value for the equivalent distance for the posdiim
contribution and call it/;, for example. This would imply

depfl :dpeeqil,

€eq

(C.1)

€p
so the usage af.4 andd,, gives a completely equivalent formulation,
leading to the same result. The only reason we did not chadase i
aesthetic: we simply preferred a uniform twin lead modellfoth
free currents and polarisation, having the same effectépastion
distanced.

We emphasise this point, because we need a consistentidefinit
for the separation distance to analyse the polarisatiorectiele-
ments in an equivalent circuit that we develop here (shown in
Figure C.1). For this purpose we use the same vdlused along

L L

cal:E_T_ caz:E_fT\_I. .e
2

CaThV CoTh

L

caN:E_T_

CanT fﬂ_"

TV

Fig. C.1: The space between the conductors is modelled by capaci-
tors in parallelCy, Co, ... Cn, each one representing a slice around
an electric field line (shown in Figure C.2). Each electriddfiéne
may pass part of its trajectory through the air, and the oplzet
through the dielectric, hence each capacmr con5|sts of two
capa0|tors in serieg?, ; andCy ;, SO thalC_ = CM + C_ The
value f; is the fraction of voltage on the dlelectnc for the fielddin
defining capacitoC’; (see Figure C.2).
the whole paper, i.e. this one given in Eq. (B.29).

We consider the capacitors in Figure C.1 as parallel plates
capacitors, as follows

e0Ao ~_ €coerdo
dai 3 di = ddi )
where Ag is afixed effective area (more accurately perpendicular
length),d, ; andd,; are the effective separation distances of the air

and dielectric parts, respectively, and we require thein smbe the
total effective separation distandenentioned before:

dei+dg; =d.

C,“' =

(€.2)

(C.3)

From Egs. (C.2) and (C.3) it is easy to show ttiat andd;; come
out

1-fi erfi
dgi =d——r— s dy; =d—>2t C.4
L e L A PR
and the capacitaf’; may be written as
€0 A
Ci= 22— fit erfi (C5)
11



The field lines describing the capacitars in the equivalent circuit
in Figure C.1 are shown in Figure C.2 for a microstrip. In gahe

,,,,,,,,,,

,,,,,,,,,, n

ATV

kkkkkkkkk

¢
[
tos
L
+ot

'
'
1
1
L

o

Fig. C.2: The transverse electric field in a microstrip shown by the
blue arrows. The total voltage on the microstrif/isin general, field
lines are partly in the air and partly in the dielectric, areldefine the
voltage on the aif1 — f;)V and the voltage on the dielectrjgl’
for a given electric field ling. This is evidently shown on the “red”
line which is partly in the air and partly in the dielectrih@“green”
line passes only through the dielectric, it is therefore ecid case
of the above withf; = 1. The dashed “red” line shows the projection
of the continuous line (inside the dielectric) on thelirection, and
we define the relation between the (dashed) projectionhesnud the
continuous lingy; for a given electric field ling. For the red lingy;
is close but not equal to 1, but for the “green” line, beingatlal to
thex direction,g; = 1.
each field line is partly in the air and partly in the dielectso that
the voltage on the air if 5y E7 - dland the voltage on the dielectric
art

\\\\\

p
is [dielectricET - d1. According to this, we defined; the fraction of

art

voltaéje on the dielectric, as evidently shown on the “red&lin
Figure C.2. The “green” line in Figure C.2 passes only thiotige
dielectric, it is therefore a special case of the above vfjtk= 1.
The dashed “red” line shows the projection of the continulines
(inside the dielectric) on the direction, and the relation between the
projected line and the original line is callegl for the electric field
line 7. For the red lineg; is not equal, but close to 1. For the green
line, being in thex direction, g; = 1. The projection is discussed
further on in context with the polarisation currents.

Given the number of capacitorsié, the total capacitance per lon-
gitudinal unit lengthC' is equal the sum onof all the capacitances
C;inEqg. (C.5)

N o
02201': Odoz;[l—fi+67-fi]~
1= 1=

The free space capacitance is obtained by settingfah 0:
Ciree space= N 53‘40, and the value ofecq is calculated from

Eqg. (A.12), obtaining

(C.6)

1< 1
€eq = 37 dDl—fitefil=1+ (e — D d i (€7
i=1 iz

or in a more suggestive form:

€eq — 1

(€.8)

& — 1 <f>7

where(f) is the average fraction of voltage on the dielectric. Given
that electric field is proportional to voltage, and polatisa vector
is proportional ta:, — 1 times electric field (see Eq. (B.4)), suggests

in the space between the plates, and this vector may haer-diff
ent directions in different locations. The total effect be tadiation
comes from the equivalent polarisation currelementector contri-
bution (we chose the axis in this direction - see Appendix B). We
therefore need the projection of the polarisation current element
vector (see projection factgr- dashed red line in Figure C.2) - we
shall call it@Q p. It is obtained by multiplying/p by d(ep — 1) /ep,
whereg,, already includes effect of the projection, as explainetiat t
beginning of this appendix. Considering the parallel ptatpacitor

of our model in Eq. (C.9), we have
—1 .

Qp=d . Ip = jwVegeeqNAg(ep — 1) /ep.
T

Now we apply this to our model: the totablarisation current
element) p is the sum on the polarisation current elements on all the
capacitorsn dielectricC ;. The contribution from each capacitor is
jwCy; times the voltage on this capacittif;, times the projection
factorg;, timesdg ; (er — 1) /e, hence we obtain

N

€r

(C.10)

N
. -1
Qp =Y jwfiVgiCaidai™—— = jweo(er — 1AV > gifi
i1 i—=1
' “(c.1n
Now comparing (C.10) with (C.11), yields
op—1 1
P - _ 1) — L f
ceq = = (e~ 1)y ;gm. (C.12)
We divide it bye.q — 1 from Eq. (C.8), obtaining
(ep—D/ep _ Xivy9ifi
= ~ (C.13)
(ceg =1)/eeq SN f;
or in a more suggestive form:
M = (g). (C.14)

(€eq —1)/e€eq
where(g) is the projection factor averaged by the fraction of volt-
age in the dielectric. Given that< g; < 1, also0 < {(g) < 1, and
hencel < ¢, < ecq = n2,, however it seems thdy) cannot be 0
for a physical system, hence the lower limit should be bighan
0, so that practically, > 1 always. Hence we consider the case of
(9) =0, orep =1 only in the context of “ignoring the transverse
polarisation”. For the microstrip example (see Figure 13),~ 1,
so thatep ~ eeq, but for the circular shaped conductors cross section
(see Figure 8)(g) = 0.68.

Using this model, we can also show that the solution of E7B.
yields (C.14). The integral in Eq. (B.37), carried over thelettric
region, yields on capacitar V g, f; Ag, and this is summed on all
capacitors:

N
da'dy'Ee = AV gifi. (C.15)
1=1

dielectric
region

UsingV ™ = ZoI™, Eq. (A.10), andtrg = 1/eg, one obtains

N
€p — 1 _ 60(67« — 1)A() e
Ep - Od ;glf’u

(C.16)

and usingC' from Eq. (C.9), reproduces exactly Eq. (C.12), leading

thate.q — 1 indicates on the average polarisation vector. We remark to the result (C.14).

that using Egs. (C.6) and (C.7), one can write the total degace

as

eoceq(NAp)
d

so that it is represented by a parallel plates capacitor lative

dielectric permittivity e.q, distanced between the plates and area

(or rather perpendicular lengtfy Ag.

Now we calculate the polarisation current element. On argive
capacitor, the displacement currentlis = jwCV, which is also
the (AC) current passing through the capacitor. We remaaktttis
total current is a cross section integral on a current dgngittor

C = (C.9)

12

Returning to the discussion at the beginning of this appendi
(from which we derived Eq. (C.1)), we understand from Eq14J.
that the physical meaning df, is expressed by the relation

d
- = (o),
so that in the representation we used in this work of keepirg t
separation valud, the projection factor lies in the definition ef.
In the alternative representation of replacipdy e.q and use for the
effective separation the valul, the projection lies in the separation
dp.

(C.17)
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