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Abstract

It is known that an accelerating charge radiates according to Larmor formula. On the other

hand, any DC current following a curvilinear path, consists of accelerating charges, but in such

case the radiated power is 0. The scope of this paper is to analyze and quantify how a system of

charges goes from a radiating state to a non radiating state when the charges distribution goes to

the continuum limit. Understanding this is important from the theoretical point of view and the

results of this work are applicable to particle accelerator, cyclotron and other high energy devices.
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I. INTRODUCTION

There are many physical configurations in which discrete charges are in acceleration,

but in spite of that they behave almost like steady state DC. This situation is encountered

in any DC or low frequency electrical circuit, because in spite of the fact that the charge

distribution is always discrete and each charge accelerates in the influence of the electric

field, one may consider the charge distribution as almost continuous. For example the

model used for conducting materials is of an average drift velocity for positive and negative

charges which is proportional to the electric field v± = ±µ±E, µ± being the mobility of the

positive and negative charges, respectively. Hence the current density is J = ρ+v++ρ−v− =

(ρ+µ+−ρ−µ−)E, where ρ± is the charge density of the positive and negative charge carriers,

ρ− being negative, so that the total charge density is ρ = ρ+ + ρ− = ǫ0∇ · E. In case the

charges are protons and electrons, in a conductor, the protons mobility is µ+ = 0 and

ρ+ = −ρ−, so that usually ∇ · E = 0 like in free space. In addition, the model considers ρ−

to be almost uniform, so that one defines the conductivity σ = −ρ−µ−, resulting in Ohm’s

law J = σE.

Another situation, for which charges are somehow “more discrete”, are DC or low fre-

quency ion drift devices, and for those we usually have one type of charge carriers, say

positive ions. Here we use J = ρv = ρµE, and one may not assume the charge density

is uniform, but rather has to use Gauss’s law ǫ0∇ · E = ρ, resulting in a set of nonlinear

equations. In principle, such problem is time dependent, because discrete ions move in the

space, but it appears that the DC approximation ∇ · J = 0 works very well for such cases

[13–16].

In either of the above situations, currents may follow curvilinear paths, in which case, the

charges clearly accelerate, also if the magnitude of their velocity is constant, and still the

DC model works well for most practical cases for which the density of the charge carriers is

big.

The purpose of this work is to analyze and quantify how a system of charges goes from a

radiating state to a non radiating state when the charges distribution goes to the continuum

limit. Certainly, the radiation has to disappear gradually, so that this vanishing may be

quantified. Some preliminary work [12] has been done in this direction, but because this

work has been done a priori in a non relativistic approach, its results are inaccurate and
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incomplete.

Understanding the physics of the transition from a radiative state to a non radiative state

is important from the theoretical point of view, but not only - this work analyzes radiation

from rotating charges and its results are applicable to particle accelerator, cyclotron and

other high energy problems [17–22].

It should be mentioned that the continuum limit of a charge distribution does not exist

in reality, because the electric charge is quantized as integer multiples of the electron charge.

However, this physical fact does not apply any constraint on the classical (non quantum)

electrodynamics, which handles in a consistent way continuum distribution charges and DC.

This work being carried out in the classical electrodynamics framework, there is nothing to

prevent us from considering the continuum distribution limit.

The calculation is done in a canonical configuration of charges in circular motion at

constant speed. The configuration and the formulation are explained in section 2.

In section 3 we calculate the fields, explain their behavior and derive an exact expression

for the radiated power.

In section 4 we calculate the radiation reaction and show that the power needed to support

the radiation equals the radiated power.

In section 5 we derive an asymptotic result for the case the number of charges is big

(continuum limit). As a special case, we derive in section 6 the limit for slow charges,

and this case is of importance because it represents the typical situation of DC currents in

devices as discussed before. The mathematical derivations in those sections are tedious, but

the results are simple and conclusive.

The paper is ended with some concluding remarks.

The work is written in SI units, and we shall use the known constants: vacuum permittiv-

ity ǫ0 = 8.85× 10−12 F/m, vacuum permeability µ0 = 4π× 10−7 H/m, free space impedance

η0 =
√

µ0/ǫ0 = 376.73 Ω and speed of light in vacuum c = 1/
√

µ0ǫ0 ≈ 3 × 108 m/sec.

II. CONFIGURATION AND FORMULATION

A total amount of charge q is rotating in a circle of radius d at constant speed v so that the

angular velocity is ω = v/d. The charge q is “split” into N charges of value q/N , uniformly

distributed around the circle, so that the charge number k is at the angle ωt+2πk/N , where
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FIG. 1: (color online) N charges (here N = 3) of magnitude q/N each, in circular motion on the

xy plane at radius d around the z axis. The far observer’s spherical coordinates are also shown in

the figure.

k = 0, 1, ..N − 1.

The configuration is shown in Figure 1, for N = 3.

The location of the charge k as function of time is given by:

r′k(t) = d[x̂ cos(ωt + 2πk/N) + ŷ sin(ωt + 2πk/N)] (1)

The fields propagate with the speed of light c. Hence the fields at the observer location

r at time t are influenced by the motion of each charge, at an earlier (retarded) time.

Specifically, the fields are influenced by the motion of the charge k at time t′k so that

Rk ≡ |r − r′k(t
′
k)| = c(t − t′k) (2)

At large distance from the charges, one may approximate:

Rk ≈ r − d sin θ cos φk (3)
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FIG. 2: (color online) The dark colored spheres represent the charges at the current position at

time t and the light colored spheres represent the charges at the retarded positions at times t′k. The

retarded positions are connected with dashed lines to the observer location, and those distances

are called R0, R1 and R2. This emphasizes that the field at observer is determined by the velocities

and accelerations of the charges at the retarded times.

where

φk ≡ ωt′k + 2πk/N − ϕ, (4)

hence the retarded time t′k may be calculated from the following implicit equation:

t′k = t − r/c + (d/c) sin θ cos φk, (5)

which may be solved numerically by setting a “1st guess” t′k = t − r/c in the right side

of eq. (5) and recalculate t′k until convergence is obtained.

Figure 2 emphasizes the meaning of retarded positions of the charges.

Our purpose is to calculate the power radiated by those rotating charges. Of course, for

N = 1 the result is known by Larmor formula (and will be confirmed later on).

The general form of the Larmor formula [1–11] is:
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PLarmor =
q2γ6

6πǫ0c
(β̇2 − (β × β̇)2), (6)

where

β ≡ v/c. (7)

and

γ ≡ 1/
√

1 − β2 (8)

If one defines the angle between the velocity and the acceleration as α, one may express

(β × β̇)2 = (ββ̇ sin α)2 an rewrite

PLarmor =
q2γ6

6πǫ0c
β̇2(1 − β2 sin2 α). (9)

In our case of circular motion, the velocity is perpendicular to the acceleration, so that

sin2 α = 1. Therefore by replacing 1−β2 = 1/γ2, the Larmor formula simplifies for our case

to

P |N=1 =
q2γ4β̇2

6πǫ0c
=

q2γ4a2

6πǫ0c3
, (10)

where a is the acceleration. We will calculate how this power decreases when the number

of charges N increases.

III. FIELDS AND POWER CALCULATION

To calculate the power radiated from the collection of charges in Figure 1, one needs only

the far fields, i.e. those who behave like 1/R. The far electric and magnetic fields due to

the moving charge k are given by [2, 5]:

Ek = (q/N)µ0
R̂k × [(R̂k − βk) × ak]

4π(1 − βk · R̂k)3Rk

(11)

and
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Hk = R̂k ×Ek/η0 (12)

where R̂k is the unit vector pointing from the position of the charge to observer and Rk

is the distance between the charge and the observer, as defined in eq. (2) - see Figure 2.

βk = vk/c = ṙ′k/c is the velocity relative to c and ak = v̇k is the acceleration of the charge.

All the dynamical variables are evaluated at the retarded time (defined in eq. (5)).

Defining r̂ as the unit vector pointing from the coordinates origin to the observer, we

may calculate in the far field the difference:

R̂k − r̂ =
r − r′k
|r − r′k|

− r

r
≈ −r′k

r
(13)

Hence one may use r̂ instead of R̂k in eqs. (11) and (12) with an error of order 1/R2,

which does not affect the calculations of the radiated power. Also, in the denominator of

eq. (11) we may set Rk = r, as always done for far field. So we express the electric and

magnetic fields as the sum of the contribution from all the charges:

E =
µ0q

4πrN

N−1∑

k=0

r̂ × [(r̂ − βk) × ak]

(1 − βk · r̂)3
(14)

and

H = r̂ × E/η0 (15)

Now using eq. (1), we evaluate r̂× [(r̂−βk)×ak] and express it in spherical coordinates:

r̂ × [(r̂ − βk) × ak = a[θ̂ cos θ cos φk + ϕ̂(β sin θ + sin φk)] (16)

and βk · r̂ evaluates to

βk · r̂ = −β sin θ sin φk. (17)

Setting those results into eq. (14), we obtain

E =
µ0qa

4πrN
[θ̂ cos θ Fc + ϕ̂ Fs] (18)
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and

H =
qa

4πrcN
[−θ̂ Fs + ϕ̂ cos θ Fc] (19)

where the functions Fc and Fs are defined as:

Fc(t, ϕ, θ, β, N) ≡
N−1∑

k=0

fc(φk) (20)

and

Fs(t, ϕ, θ, β, N) ≡
N−1∑

k=0

fs(φk) (21)

and the functions fc and fs are defined as

fc(φk) ≡
cos φk

(1 + p sin φk)3
, (22)

and

fs(φk) ≡
p + sin φk

(1 + p sin φk)3
, (23)

and p is defined as

p ≡ β sin θ (24)

and is a parameter which controls the behavior of φk, as will be soon shown.

The power per unit of normal area (or Poynting vector) is given by, S = E×H = r̂E2/η0

which results in

S = r̂
[ qa

4πcNr

]2
η0

∣∣∣ϕ̂ Fs + θ̂ cos θ Fc
∣∣∣
2

(25)

The total power is calculated via

P = r2

∫ 2π

0

dϕ

∫ π

0

dθ sin θ S · r̂ (26)

which results in
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P = P |N=1 G(t, β, N) =
q2a2γ4

6πǫ0c3
G(t, β, N). (27)

Here we factored out the Larmor formula for the radiation of a single charge - see eq. (10),

so that G(t, β, N) is dimensionless and represents the decay of the power. The function

G(t, β, N) is given by

G(t, β, N) ≡ 3

8πγ4N2

∫ 2π

0

dϕ

∫ π

0

dθ sin θ F (t, ϕ, θ, β, N) (28)

hence G = 1 for N = 1, for any t or β and the function F is

F (t, ϕ, θ, β, N) ≡
∣∣∣ϕ̂ Fs + θ̂ cos θ Fc

∣∣∣
2

= Fs2 + cos2 θ Fc2 (29)

Now we eliminate t′k from eq. (5) and rewrite the implicit eqs. (5) and (4) in terms of φk

φk = ω(t− r/c) − ϕ + 2πk/N + p cos φk (30)

This allows us to change variable ϕ′ = ϕ − ω(t− r/c) in (28) obtaining:

G(t, β, N) =
3

8πγ4N2

∫ 2π−ω(t−r/c)

−ω(t−r/c)

dϕ′

∫ π

0

dθ sin θ (Fs2 + cos2 θ Fc2), (31)

so that eq. (30) is rewritten as

φk = −ϕ′ + 2πk/N + p cos φk, (32)

We see that if φk and ϕ′ satisfy eq. (32), also φk − 2π and ϕ′ + 2π satisfy it, hence cos φk

and sin φk are periodic functions of ϕ′, with a periodicity of 2π. Therefore, the dϕ′ integral

in eq. (31) may be evaluated over any period of 2π, showing that G (and therefore also the

radiated power P ) does not depend on time, so that we may simplify eq. (31) to

G(β, N) =
3

8πγ4N2

∫ 2π

0

dϕ′

∫ π

0

dθ sin θ (Fs2 + cos2 θ Fc2). (33)

We redefined G to be time independent, so that fc, fs, Fc and Fs in eqs. (22), (23), (20)

and (21) become functions of ϕ′ instead of t and ϕ.

For understanding the behavior of Fs and Fc, we plot fc, fs in eqs. (22) and (23), and
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theirs sums (eqs. (20) and (21)) for different parameters.

Clearly for very small p in eq. (32), φk ≈ −ϕ′ + 2πk/N , hence the cosine or sine of φk

equal approximately to the cosine or sine of −ϕ′ + 2πk/N , so that both have harmonic

shapes as function of ϕ′. In such case fc ≈ cos(−ϕ′ + 2πk/N) and fs ≈ sin(−ϕ′ + 2πk/N),

hence they sum to a small value as observed in Figures 3 and 4. For N = 3 (Figure 3)

the amplitudes of Fc and Fs are around 0.1, and this decreases with N , as may be seen in

Figure 4, for N = 10.
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FIG. 3: (color online) The fc in eq. (22) and their sum is shown in panel (a) and the fs in eq. (23)

and their sum is shown in panel (b) for N = 3 and p = 0.1.
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FIG. 4: (color online) The fc in eq. (22) and their sum is shown in panel (a) and the fs in eq. (23)

and their sum is shown in panel (b) for N = 10 and p = 0.1.

As p increases, fc and fs in eqs. (22) and (23) get more distorted, hence they sum to

bigger amplitudes, as observed in Figures 5, 6, 7 and 8.

In Figure 5, showing the behavior for p = 0.3 and N = 3, Fc and Fs have amplitudes of
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0.87 and 0.76, respectively, and those decrease for N = 10 (Figure 6) to 0.0086 and 0.0082.

Also we see that for p = 0.3, although fc and fs are distorted, the sums Fc and Fs are almost

undistorted, unlike for the p = 0.5 and N = 3 case in Figure 7.
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FIG. 5: (color online) The fc in eq. (22) and their sum is shown in panel (a) and the fs in eq. (23)

and their sum is shown in panel (b) for N = 3 and p = 0.3.
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FIG. 6: (color online) The fc in eq. (22) and their sum is shown in panel (a) and the fs in eq. (23)

and their sum is shown in panel (b) for N = 10 and p = 0.3.

The case of p = 0.5 is shown in Figures 7 and 8. In this case, not only fc and fs are

distorted, but also the sums Fc and Fs, however the distortion of the sum decreases when

the number of charges N increases, as may be seen for the case N = 10 in Figure 8. In the

last case the amplitudes of Fc and Fs are 0.59 and 0.5, much bigger than in the parallel case

with p = 0.3 .

To summarize, the functions Fc and Fs increase with p and decrease with N , tending to

undistorted harmonic functions, for big values of N .
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FIG. 7: (color online) The fc in eq. (22) and their sum is shown in panel (a) and the fs in eq. (23)

and their sum is shown in panel (b) for N = 3 and p = 0.5.
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FIG. 8: (color online) The fc in eq. (22) and their sum is shown in panel (a) and the fs in eq. (23)

and their sum is shown in panel (b) for N = 10 and p = 0.5.

It is interesting to remark that the average of the functions fc and fs is always 0, although

this is not always visible for the fs functions. This may be proved by calculating

〈fc,s〉 =
1

2π

∫ 2π

0

dϕ′fc,s(φk) =
1

2π

∫ 2π

0

dϕ′ hc,s(φk)

(1 + p sin φk)3
(34)

where for brevity we called fc,s the functions fc or fs, and we called their average 〈fc,s〉.
We also use the abbreviation hc,s for the functions hc and hs defined as

hc(φk) ≡ cos φk (35)

hs(φk) ≡ p + sin φk (36)
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for the fc and fs average calculation, respectively. We change variable from ϕ′ to φk, and

we find from eq. (32) that

dϕ′/dφk = −1 − p sin φk, (37)

getting:

〈fc,s〉 = − 1

2π

∫ φk(0)−2π

φk(0)

dφk
hc,s(φk)

(1 + p sin φk)2
, (38)

where φk(0) is the value of φk at ϕ′ = 0. Because the integrand has a periodicity of 2π,

one may integrate over any period of 2π, obtaining:

〈fc,s〉 =
1

2π

∫ 2π

0

dφk
hc,s(φk)

(1 + p sin φk)2
. (39)

This integral is solved by the residue method on the complex plane, in Appendix A, and

its result is 0.

Now we continue with the calculation of G in eq. (33). Rewriting eq. (32) for the charge

m instead of k results in

φm = −ϕ′ + 2πm/N + p cos φm, (40)

which may be rewritten as

φm = −(ϕ′ − 2π(m − k)/N) + 2πk/N + p cos φm, (41)

showing that if we could explicitly express φk(ϕ
′) from eq. (32), φm would be the same

function of ϕ′ only shifted:

φk(ϕ
′) = φm(ϕ′ − 2π(m − k)/N) (42)

as also evident from Figures 3 - 8. Therefore both Fs and Fc functions remain unchanged

for a shift of multiples of 2π/N , say:
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Fc(ϕ′ + 2π/N), θ, β, N) =

N−1∑

k=0

cos φk(ϕ
′ + 2π/N)

(1 + p sin φk(ϕ′ + 2π/N))3
=

N−1∑

k=0

cos φk+1(ϕ
′)

(1 + p sin φk+1(ϕ′))3
. (43)

and the sum being on all charges (and k is modulo N), we are left with the same result.

We may therefore rewrite in eq. (33)

∫ 2π

0

dϕ′ =
N−1∑

n=0

∫ 2π(n+1)/N

2πn/N

dϕ′ (44)

and after changing variable ϕ′′ = ϕ′ − 2πn/N , we are left with N identical integrals over

the period 0 to 2π/N . For simplicity we rename ϕ′′ back to ϕ′ and rewrite the function G

as:

G(β, N) =
3

8πγ4N

∫ 2π/N

0

dϕ′

∫ π

0

dθ sin θ (Fs2 + cos2 θ Fc2), (45)

and this will significantly reduce the time of a numerical integration. Now looking at the

θ dependence of Fs and Fc, we remark from eq. (32) that φk depends on p = β sin θ, hence

it is invariant under replacing θ by π − θ, and so is cos2 θ. We may therefore replace the

integration from 0 to π by twice the integration from 0 to π/2, getting

G(β, N) =
3

4πγ4N

∫ 2π/N

0

dϕ′

∫ π/2

0

dθ sin θ (Fs2 + cos2 θ Fc2), (46)

Now we change to the variable p defined in eq. (24) and rewrite eq. (46) obtaining:

G(β, N) =
3

4πNγ4β2

∫ 2π/N

0

dϕ′

∫ β

0

dp p
(
Fs2/

√
1 − (p/β)2 + Fc2

√
1 − (p/β)2

)
, (47)

For the case of N = 1 we know G must be 1, but for consistency we shall prove it:

G(β, 1) =
3

4πγ4β2

∫ 2π

0

dϕ′

∫ β

0

dp p

([
p + sin φ0

(1 + p sin φ0)3

]2

/
√

1 − (p/β)2 +

[
cos φ0

(1 + p sin φ0)3

]2√
1 − (p/β)2

)
, (48)
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where Fc2 and Fs2 reduced here to a single term. By changing integration order, we may

perform the dϕ′ integration by the change of variable dϕ′/dφ0 defined in eq. (37), obtaining

G(β, 1) =
3

4πγ4β2

∫ β

0

dp p

∫ φ0(0)

φ0(0)−2π

dφ0

(
(p + sin φ0)

2

(1 + p sin φ0)5
√

1 − (p/β)2
+

cos2 φ0

√
1 − (p/β)2

(1 + p sin φ0)5

)
.

(49)

All the functions have a 2π periodicity on φ0, so one may use any limits of interval 2π for

φ0. By changing variable z = exp(iφ0) and using the residue method on the complex plane

we obtain

∫ 2π

0

dφ0
cos2 φ0

(1 + p sin φ0)5
=

π

4

4 + p2

(1 − p2)7/2
(50)

and

∫ 2π

0

dφ0
(p + sin φ0)

2

(1 + p sin φ0)5
=

π

4

4 + 3p2

(1 − p2)5/2
, (51)

hence

G(β, 1) =
3

16γ4β2

∫ β

0

dp p

[
(4 + p2)

√
1 − (p/β)2

(1 − p2)7/2
+

(4 + 3p2)

(1 − p2)5/2
√

1 − (p/β)2
,

]
(52)

which results in

G(β, 1) =
3

16γ4β2

[
2β2(2 − β2)

3(1 − β2)2
+

2β2(6 + β2)

3(1 − β2)2

]
=

3

16γ4β2

16β2

3(1 − β2)2
= 1 (53)

We perform now the calculation in eq. (47) numerically. Knowing that G(β, 1) = 1, this

calculation actually shows the power radiated by N charges, divided by the power radiated

by a single charge. The results are shown as function of N for different values of β in Figure 9.

The radiated power calculated above, must be supplied by a power source which adds the

necessary energy to overcome the radiation reaction. This radiation reaction is calculated
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FIG. 9: Result of G (eq. (47)) as function of the number of charges N , for different values of β.

For big N , G goes asymptotically to 0 and as smaller β is, G goes faster to 0.

in the following section.

IV. THE RADIATION REACTION

We calculate now the Lorentz force on the charges and the resulting radiation resistance

power for comparing with the radiated power. We will need the electric field on charge n at

time t due to charge m at its retarded position at the earlier time t′, so that:

|r′n(t) − r′m(t′)| = c(t − t′). (54)

Using the expression for r′k in eq. (1) we obtain
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4d2 sin2

[
ω(t− t′) + 2π(n − m)/N

2

]
= c2(t − t′)2, (55)

which is exact for any m and n. By definition, t − t′ > 0, so to take the correct square

root from the left side of this equation, we need to know the connection between m and n.

To simplify, we restrict:

0 ≤ m < n ≤ N − 1, (56)

for which we obtain

2d sinΦnm = c(t − t′), (57)

where Φnm is defined by

Φnm ≡ ω(t − t′) + 2π(n − m)/N

2
. (58)

Now we isolate t − t′ from eq. (58) and set it in eq. (57), obtaining

Φnm = π(n − m)/N + β sin Φnm, (59)

which is an implicit equation, that can be solved by setting a 1st guess Φnm = π(n−m)/N

in the right side of the equation and recalculate Φnm till convergence is obtained.

Figure (10) gives the geometrical interpretation of eqs. (57)-(59).

Let us look at a simple example of solution for eq. (59). Say there are 4 charges, so their

locations at t = 0 are: 0o, 90o, 180o and 270o for charges 0, 1, 2, 3 respectively and let

us take β = 0.7. For calculating the effect of charges 0, 1 and 2 on charge 3, we need to

calculate Φ30, Φ31 and Φ32, which come out: 2.67259, 2.15479 and 1.48268 respectively, in

radians. The retarded angle of charge m is 270o − 2Φ3m - see Figure (10). So translating

into degrees, we get the retarded angles of −36.256o, 23.079o and 100.097o for charges 0, 1

and 2 respectively, which are all smaller than the current angles of those charges.

It is to be mentioned that the solution Φmn of eq. (59) is time independent, meaning that

the angle difference between the current position of the charge n and retarded position of

the charge m does not depend on time. Because the charges rotate, the only thing which

17



FIG. 10: Geometrical interpretation for eqs. (57)-(59). The charges rotate on the big circle of

radius d. The retarded distance c(t − t′) is the big (red) segment on the 2Φmn arc, hence equal to

2d sin Φmn according to eq. (57). We also see that the big angle 2Φmn (marked in red) equals the

sum of the angles ω(t − t′) and 2π(n − m)/N according to eq. (58). Two orthogonal unit vectors

(green) r̂(t) and ϕ̂(t) are drawn near charge n, representing the radial and tangential directions of

the moving charge.

depends on time are the local unit vectors comoving with the charge r̂(t) and ϕ̂(t) - see

Figure (10).

Now the electric field on charge n due to charge m at its retarded position is given by

[2, 5]

Emn =
q/N

4πǫ0

[
R̂mn − βm

γ2R2
mn(1 − βm · R̂mn)3

+
R̂mn × [(R̂mn − βm) × β̇m]

cRmn(1 − β · R̂mn)3

]

, (60)

where the 2nd part is the far field which we used in eq. (11) (after replacing a by β̇c and

1/
√

ǫ0µ0 by c) and the first part is the near field which behaves like 1/R2.
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The quantities appearing in eq. (60) are: βm is the retarded velocity of charge m (relative

to c), Rmn is the distance between the retarded position of charge m and the current position

of charge n (and equals to c(t − t′) - see Figure (10)), and R̂mn is the unit vector pointing

from the retarded position of charge m to the current position of charge n.

We need the field at charge n in local components r̂(t) and ϕ̂(t) (see Figure (10)) and we

calculate now all the needed quantities to express the electric field Emn. So we obtain

R̂mn − βm = r̂(t)[sin Φnm − β sin(2Φnm)] + ϕ̂(t)[cos Φnm − β cos(2Φnm)] (61)

R̂mn × [(R̂mn − βm) × β̇m] = ωβ(cosΦnm − β)[̂r(t) cos Φnm − ϕ̂(t) sin Φnm] (62)

βm · R̂mn = β cos Φnm (63)

and

Rmn = 2d sinΦnm (64)

which is easily derived also from Figure (10), because Rmn = c(t − t′), which equals to

2d sinΦnm according to eq. (57). Putting eqs. (61)-(64) in eq. (60) we obtain

Emn =
q/N

4πǫ0

1

4d2 sin Φnm(1 − β cos Φnm)3

[
r̂(t)[sin Φnm − β sin(2Φnm)] + ϕ̂(t)[cos Φnm − β cos(2Φnm)]

γ2 sin Φnm

+

2β2(cos Φnm − β)[̂r(t) cos Φnm − ϕ̂(t) sin Φnm]
]

(65)

With the aid of this field we will calculate the total force acted on a charge by the other

charges, but we also need the “self” radiation reaction force. For the most general case, this

is given by [2, 5]

Fself =
(q/N)2

4πǫ0c2

[
2

3
γ2β̈ + 2γ4(β · β̇)β̇ +

2

3
γ4(β · β̈)β + 2γ6(β · β̇)2β

]
. (66)
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In our case, of circular motion, the velocity is perpendicular to the acceleration so β · β̇ =

0, we therefore remain with 2 terms

Fself =
(q/N)2

4πǫ0c2

[
2

3
γ2β̈ +

2

3
γ4(β · β̈)β

]
. (67)

For the circular motion we know that β̈ = −ω2β, and using ω = v/d = βc/d, eq. (67)

reduces to

Fself = −(q/N)2γ4

6πǫ0d2
β2β, (68)

showing that the self reaction force is in the direction opposite to the velocity of the

charge.

Now we chose n to be the “last” charge, i.e. n = N − 1, hence the restriction in eq. (56)

holds, and calculate the total force on it, given by the self force plus the force acted by all

other charges (i.e. the Lorentz force):

FN−1 = Fself + (q/N)
N−2∑

m=0

[Em,N−1 + vN−1(t) ×Bm,N−1], (69)

where vN−1(t) is the velocity of charge N − 1 and Bm,N−1 is the retarded magnetic field

on charge N − 1 due to charge m.

The dumping power on charge N −1 is given by vN−1(t) ·FN−1, therefore we do not need

the magnetic part, obtaining

Pdump 1 charge = vN−1(t) · FN−1 = vN−1(t) · Fself + (q/N)

N−2∑

m=0

vN−1(t) · Em,N−1, (70)

The velocity of the given charge N−1 is in the tangential direction, i.e. vN−1(t) = cβϕ̂(t),

so only the tangential part of eq. (65) affects the power. We obtain
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Pdump 1 charge = cβ

{
−(q/N)2γ4

6πǫ0d2
β3+

N−2∑

m=0

(q/N)2

4πǫ0

1

4d2 sin ΦN−1,m(1 − β cos ΦN−1,m)3

[
cos ΦN−1,m − β cos(2ΦN−1,m)

γ2 sin ΦN−1,m
− 2β2(cos ΦN−1,m − β) sinΦN−1,m

]}
.

(71)

Because the dumping power on one charge does not depend on time and by symmetry is

the same for all charges, the total dumping power on the whole system of charges is just N

times the above:

Pdump = cβ

{
− q2γ4

6πǫ0Nd2
β3+

N−2∑

m=0

q2

4πǫ0N

1

4d2 sin ΦN−1,m(1 − β cos ΦN−1,m)3

[
cos ΦN−1,m − β cos(2ΦN−1,m)

γ2 sin ΦN−1,m

− 2β2(cos ΦN−1,m − β) sinΦN−1,m

]}
. (72)

The dumping power must be identical with the radiated power, with a minus sign, so to

compare them, we may factor out − P |N=1 from eq. (10):

Pdump = − P |N=1 Gdump(β, N), (73)

where

Gdump(β, N) =
1

N
− 3

8Nβ3γ4

N−2∑

m=0

1

sin ΦN−1,m(1 − β cos ΦN−1,m)3

[
cos ΦN−1,m − β cos(2ΦN−1,m)

γ2 sin ΦN−1,m
− 2β2(cos ΦN−1,m − β) sinΦN−1,m

]
. (74)

which clearly shows that for N = 1, the sum is 0, so that Gdump(β, 1) = 1 for any β.

The numerical calculation of eq. (74) shows identical results with those of G calculated from

eq. (47), as shown in Figure 9.
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V. ASYMPTOTIC RESULT FOR MANY CHARGES

To understand how the radiation goes to 0 when the number of charges N goes to infinity,

one may try to approximate either G from eq. (47) or Gdump from eq. (74), for big N .

Although Gdump seems more compact, it is more difficult to handle, and we shall develop G

for large N .

As mentioned in section 3 (see Figures 3-8), for large N the functions Fc and Fs tend to

be harmonic, hence we may approximate them by the first term of their Fourier series.

For a function a(x) with periodicity X, we specify the Fourier coefficients by

An =

∫ X

0

a(x)e−i2πnx/Xdx (75)

and a(x) is represented by its Fourier series

a(x) =
1

X

∞∑

n=−∞

Ane
i2πnx/X (76)

For brevity, to refer to the functions Fc and Fs we call them Fc,s (as in eq. (34)). We

know those functions have a periodicity of 2π/N in ϕ′ (see eq. (43)), so we define their

Fourier coefficients:

Ac,sn =

∫ 2π/N

0

Fc,s(ϕ′)e−iNnϕ′

dϕ′, (77)

and the functions Fc and Fs are expressed as:

Fc,s(ϕ′) =
1

2π/N

∞∑

n=−∞

Ac,sne
iNnϕ′

(78)

Now we calculate the Fourier coefficients Ac,sn in eq. (77). The integrand is periodic in

2π/N , so increasing the integration interval to 2π multiplies the result by N , hence we may

express

Ac,sn =
1

N

∫ 2π

0

Fc,s(ϕ′)e−iNnϕ′

dϕ′. (79)

It is to be mentioned that for N = 1, i.e. single charge cyclotron radiation, those Fourier

coefficients represent the spectral distribution of the cyclotron radiation, and they compare
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well with the results in the literature [17–19].

Now by using the definitions of Fc,s (eqs. (20) and (21)) and the property of φk from

eq. (42), we get

Ac,sn =
1

N

∫ 2π

0

N−1∑

k=0

fc,s(φ0(ϕ
′ + 2πk/N))e−iNnϕ′

dϕ′. (80)

We interchange the sum and the integral and change variable ϕ′′ = ϕ′+2πk/N , obtaining

Ac,sn =
1

N

N−1∑

k=0

e−in2πk

∫ 2π(1+k/N)

2πk/N

fc,s(φ0(ϕ
′′))e−iNnϕ′′

dϕ′′. (81)

In the above integral, fc,s has a periodicity of 2π and e−iNnϕ′′

has a periodicity of 2π/N ,

therefore the integrand is periodic by 2π. We may therefore move the integration range to

be between 0 and 2π, showing that the integral does not depend on k. After renaming ϕ′′

to ϕ′ we obtain

Ac,sn =
1

N

(
N−1∑

k=0

e−in2πk

)∫ 2π

0

fc,s(φ0(ϕ
′))e−iNnϕ′

dϕ′ =

∫ 2π

0

fc,s(φ0(ϕ
′))e−iNnϕ′

dϕ′, (82)

because e−in2πk = 1 for any k. We see that the n Fourier coefficient of Fc,s is actually the

Nn Fourier coefficient of fc,s(φ0), which have a 2π periodicity. This means that if we repre-

sented the fc,s functions by their Fourier components and evaluated Fc,s =
∑N−1

k=0 fc,s(φk),

all Fourier components would cancel out except of the nN components, i.e. the 0, N , 2N ,

etc. The 0 Fourier coefficient is 0, because fc,s have 0 DC level (see eq. (39)), and clearly the

second Fourier coefficient of Fc,s, which is the 2N Fourier coefficient of fc,s, is much smaller

than the first coefficient for large N , as evident also from Figures (3)-(8).

Therefore, for large N we get the asymptotic Fc,s from its first Fourier coefficient (i.e.

coefficients 1 and −1), so that we get from eq. (78):

Fc,s(ϕ′) → N

2π

(
Ac,s1e

iN1ϕ′

+ Ac,s−1e
iN(−1)ϕ′

)
. (83)

Because Fc,s are real, Ac,s−1 = Ac,s∗1 and we obtain
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Fc,s(ϕ′) → N

π
|Ac,s1| cos [Nϕ′ + arg(Ac,s1)] . (84)

So we have to calculate the first Fourier coefficients of the Fc and Fs functions, Ac,s1.

From eq. (82) we get

Ac,s1 =

∫ 2π

0

fc,s(φ0(ϕ
′))e−iNϕ′

dϕ′, (85)

We change variable to φ0 and according to eq. (37) we have dϕ′/dφ0 = −1 − p sin φ0, so

we obtain:

Ac,s1 =

∫ φ0(0)−2π

φ0(0)

hc,s(φ0)

(1 + p sin φ0)3
e−iN(−φ0+p cos φ0)dφ0(−1 − p sin φ0), (86)

where hc,s is an abbreviation for the functions hc(φ0) and hs(φ0), defined in eqs. (35) and

(36), respectively.

The integrand being periodic on 2π, we may shift the limits by any value getting

Ac,s1 =

∫ 2π

0

hc,s(φ0)

(1 + p sin φ0)2
eiNφ0e−iNp cos φ0dφ0. (87)

This integral is solved by the residue method on the complex plane, in Appendix B, and

the results for Ac1 and As1 are

Ac1 =
−2π(−i)N+1

√
1 − p2

∞∑

n=0

(−1)n(N/2)2n+N+1

(n + N + 1)!

n∑

m=0

(−1)m(m + 1)p2(n−m)+N−1

(N/2)m(n − m)!
[(

1 +
√

1 − p2
)m+1

−
(
1 −

√
1 − p2

)m+1
]

, (88)

and

As1 = −2π(−i)N+1i

∞∑

n=0

(−1)n(N/2)2n+N+1

(n + N + 1)!

n∑

m=0

(−1)m(m + 1)p2(n−m)+N−1

(N/2)m(n − m)!
[(

1 +
√

1 − p2
)m+1

+
(
1 −

√
1 − p2

)m+1
]

. (89)

We remark that if N is a multiple of 4, the angle of Ac1 is 90o, and each increment of N
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removes 90o from the angle of Ac1. Also we see that the angle of As1 is always bigger by 90o

than the angle of Ac1 and this is visible in Figures (3), (5) and (8). We shall name those

angles ϕc and ϕs in the following calculations.

So by setting eqs. (84) in (47), and inverting the integration order between dp and dϕ′

we obtain:

G(β, N → ∞) =
3

4πNγ4β2

[∫ β

0

dp p
(

N
π
|As1|

)2
√

1 − (p/β)2

∫ 2π/N

0

dϕ′ cos2(Nϕ′ + ϕs)+

∫ β

0

dp p

(
N

π
|Ac1|

)2√
1 − (p/β)2

∫ 2π/N

0

dϕ′ cos2(Nϕ′ + ϕc)

]

.

(90)

The dϕ′ integrals result in half the integration interval, i.e. π/N , so after simplifying we

obtain

G(β, N → ∞) =
3

4πNγ4β2

N

π

∫ β

0

dp p

(
|As1|2√

1 − (p/β)2
+ |Ac1|2

√
1 − (p/β)2

)
. (91)

Figure (11) shows the asymptotic results of G for large N according to eqs. (91), (88)

and (89), compared with the exact result from eq. (47).

The asymptotic result is much easier calculable than the exact one, and does not require

to solve for each step the implicit equation (32), but is still not given by a simple formula.

We will calculate in the next section an asymptotic expression for small β, i.e. G(β →
0, N → ∞), and for this case one arrives to a simple formula, as we shall see below.

VI. ASYMPTOTIC RESULT FOR MANY CHARGES AND LOW VELOCITY

For small β, |p| ≪ 1, hence
√

1 − p2 in the denominator of eq. (88) may be set to 1, and

1 +
√

1 − p2 ≈ 2, neglecting 1 −
√

1 − p2 in eqs. (88) and (89). So we obtain

Ac1||p|→0 = −2π(−i)N+1
∞∑

n=0

(−1)n(N/2)2n+N+1

(n + N + 1)!

n∑

m=0

(−1)m(m + 1)p2(n−m)+N−1

(N/2)m(n − m)!
2m+1 (92)
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FIG. 11: Asymptotic results for G according to eq. (91) versus exact results according to eq. (47)

as function of the number of charges N , for different values of β. The asymptotic approximation

is accurate even for a few number of charges. As β gets bigger, the difference between asymptotic

and exact is more visible for small N .

and

As1||p|→0 = iAc1||p|→0. (93)

Rearranging eq. (92) we obtain

Ac1||p|→0 = −4π(−i)N+1pN−1

∞∑

n=0

(−1)n(N/2)2n+N+1p2n

(n + N + 1)!

n∑

m=0

(m + 1)

(n − m)!

( −4

Np2

)m

, (94)

and defining K ≡ −4/(Np2), one may express the sum over m in eq. (94) as a derivative

with respect to K as follows

∂K

n∑

m=0

Km+1

(n − m)!
, (95)
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and by changing the summation variable m′ = n − m, this is written as

∂K

0∑

m′=n

Kn−m′+1

m′!
= ∂K

[
Kn+1

n∑

m′=0

(1/K)m′

m′!

]
. (96)

We may sum exactly the last sum over m′ to obtain

n∑

m′=0

(1/K)m′

m′!
= exp(1/K)

Γ(n + 1, 1/K)

n!
≈ exp(1/K), (97)

where Γ with 2 arguments is the incomplete gamma function. We are interested in small

|p|, so for |1/K| = Np2/4 ≪ 1, we obtain the approximated result given in eq. (97), which

means that for small argument, the exponential series in eq. (97) needs very few terms to

converge to an exponent. So continuing the calculation started in eq. (96) we obtain

∂K

[
Kn+1 exp(1/K)]

]
= Kn exp(1/K)[n + 1− 1/K] ≈ (n + 1)Kn = (n + 1)

( −4

Np2

)n

, (98)

where the last approximation used again the fact that |1/K| ≪ 1. Now using the result

from eq. (98) in eq. (94), we obtain

Ac1||p|→0 = −4π(−i)N+1pN−1(N/2)N+1
∞∑

n=0

n + 1

(n + N + 1)!
Nn. (99)

The above may be summed exactly, obtaining

∞∑

n=0

n + 1

(n + N + 1)!
Nn =

NN+3Γ(N) − eN (Γ(N + 2)Γ(N + 1, N) − NΓ(N)Γ(N + 2, N))

N (2+N)Γ(N)Γ(N + 2)
.

(100)

For large N , Γ(N +1, N) ≈ 1
2
Γ(N +1) and Γ(N +2, N) ≈ 1

2
Γ(N +2), hence the expression

multiplying the exponent in eq. (100) tents to 0, remaining with

∞∑

n=0

n + 1

(n + N + 1)!
Nn ≈ N−(2+N)

[
NN+3Γ(N)

]

Γ(N)Γ(N + 2)
=

N

Γ(N + 2)
≈ 1

N !
. (101)

Putting eq. (101) in (99) we obtain
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Ac1||p|→0 = −4π(−i)N+1pN−1(N/2)N+1 1

N !
≈ (−i)N+1

√
2πN(e/2)NpN−1, (102)

where the last expression has been obtained by using the Stirling approximation, and

As1||p|→0 = iAc1||p|→0 according to eq. (93).

Now we may perform the integral in eq. (91), which becomes for small β

G(β → 0, N → ∞) =
3 × 2πN(e/2)2N

4π2γ4β2

∫ β

0

dp p2N−1

(
1√

1 − (p/β)2
+
√

1 − (p/β)2

)

.

(103)

Because β → 0, we may set γ = 1, and we obtain

G(β → 0, N → ∞) =
3N(e/2)2N

2πβ2

β2N(N + 1)
√

π Γ(N)

2Γ(N + 3/2)
. (104)

For large N , Γ(N + 3/2)/Γ(N) ≈ N3/2, so we obtain

G(β → 0, N → ∞) =
3N(e/2)2N

2πβ2

β2N(N + 1)
√

π

2N3/2
≈ 3(eβ/2)2N

√
N

4
√

πβ2
. (105)

Figure 12 shows the asymptotic results calculated with eq. (105) versus exact results

according to eq. (47).

It is to be mentioned that the case of small β and large N analyzed here fits the situations

of currents in conducting materials or ion drift currents, mentioned in the introduction. In

a conducting loop, the number of charges may be of order of 1023, and β may be of order

10−12, so that β2N results in completely unmeasurable radiated power. In a ion drift device,

the number of charges may be of order of 1010 and β may be of order 10−6, so that the

radiated power is somehow bigger than for the conducting loop, but still unmeasurable.

VII. CONCLUSIONS

The purpose of this work was to learn how the radiation from discrete charges vanishes

in the continuum steady state limit, i.e. to understand the mechanism by which a system

of discrete radiating charges, becomes a non radiative DC current. We used a canonical
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FIG. 12: Asymptotic results for G according to eq. (104) versus exact results according to eq. (47)

as function of the number of charges N , for different values of β. For β = 0.05 the asymptotic

result is completely indistinguishable from the exact result, while for β = 0.1 and β = 0.15 they

are almost indistinguishable. For β > 0.2 the asymptotic approximation becomes inaccurate.

configuration of charges in uniform circular motion, uniformly spread around a circle.

We found that the log of the power decreases almost linearly with the increase in the

number of charges, and arrived to a close form solution to calculate this power if the number

of charges is big - see Figure (11).

Specifically, for low velocities, we derived a simple expression for the radiated power. It

shows that the radiated power is governed by β at the power of twice the number of charges

- see eq. (105) and Figure (12), explaining why the radiation in all the cases considered as

DC is unmeasurable.

Although the cyclotron radiation is not the purpose of this work, the formalism used in

this work is useful to high energy charged particles applications.
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Appendix A: Calculation of the average of the functions fc,s

After changing variable z = exp(iφk) in eq. (39), one obtains

〈fc,s〉 =
1

2π

2i

p2

∮

C

dz
lc,s(z)

(z − z1)2(z − z2)2
≡ 1

2π

2i

p2

∮

C

dz Lc,s(z). (A1)

where C is the counterclockwise unit circle integration contour shown in Figure (A.1)

and lc,s are abbreviations for

lc(z) ≡ z2 + 1 (A2)

and

ls(z) ≡ −i(z2 − 4bz − 1), (A3)

where b is a pure imaginary number defined by

b ≡ −0.5ip, (A4)

and the 2nd order poles are (expressed in terms of p or b)

z1,2 = −i
(
1/p ∓

√
(1/p)2 − 1

)
=

1

2

(
−b−1 ±

√
b−2 + 4

)
. (A5)

where indices 1 and 2 refer to upper and lower signs respectively - see Figure (A.1).

In the last expression of the poles in terms of b, the magnitude under the square root is

real and negative, so the square root is understood to be positive pure imaginary.

Also we named the integrand in eq. (A1) Lc,s, defined as

Lc,s =
lc,s(z)

(z − z1)2(z − z2)2
(A6)

to ease manipulations. We remark that only z1 is inside the integration contour (see

Figure (A.1)), and its residue is
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FIG. A.1: (color online) The complex z plane on which we show: the poles z1,2 in eq (A5), the

integration contour C used in eqs. (A1) and (B1), and the integration contour C1 used in eq. (B6).

The poles z1,2 are negative pure imaginary, and |z1| < 1 and |z2| > 1, the integration contour C is

on the unit circle and the integration contour C1 is on a circle of radius smaller than |z1|.

Res(L, z1) = lim
z→z1

d

dz
[Lc,s(z)(z − z1)

2] =
d

dz

[
lc,s(z)

(z − z2)2

]∣∣∣∣
z=z1

=
lc,s′(z1)(z1 − z2) − 2lc,s′(z1)

(z1 − z2)3
.

(A7)

Using the relations z1z2 = −1 and z1 +z2 = −2i/p, one finds that for both fc and fs cases

the nominator of eq. (A7) is 0, and hence

〈fc〉 = 〈fs〉 = 0. (A8)

Appendix B: Derivation of the first Fourier series coefficient Ac,s1

We change variable z = exp(iφ0) in eq. (87) to solve this integral on the complex plane,

obtaining:
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Ac,s1 =
2i

p2

∮

C

dz
lc,s(z)

(z2 + b−1z − 1)2
zNeNb(z+z−1) ≡ 2i

p2

∮

C

dz f(z) (B1)

where b is the pure imaginary number defined in eq. (A4), C is the counterclockwise unit

circle integration contour (see Figure (A.1)) and the functions lc,s are abbreviations for lc(z)

and ls(z) defined in eqs. (A2) and (A3), respectively. To ease on further manipulations we

called the integrand f(z).

The integrand has two 2nd order poles, z1,2, defined in eq. (A5) and only z1 lies inside

the integration contour C - see Figure (A.1). In addition there is an essential singularity at

z = 0, because of the z−1 in the exponent.

We first calculate the residue at z = z1. Rewriting f(z)

f(z) = Lc,s(z)zNeNb(z+z−1), (B2)

where Lc,s(z) is defined in eq. (A6), we obtain

Res(f, z1) = lim
z→z1

d

dz
[f(z)(z − z1)

2] =
d

dz

[
lc,s(z)

(z − z2)2
zNeNb(z+z−1)

]∣∣∣∣
z=z1

(B3)

which evaluates to

Res(f, z1) =
lc,s′(z1)(z1 − z2) − 2lc,s′(z1)

(z1 − z2)3
zN
1 eNb(z1+z−1

1
) +

lc,s(z1)

(z1 − z2)2

d

dz

[
zNeNb(z+z−1)

]∣∣∣∣
z=z1

.

(B4)

We already showed that the first part is 0 - (see eq. (A7)). This is because the integral

in eq. (B1) reduces for N = 0 to the integral in eq. (A1) (up to 2π). So we are left with

Res(f, z1) =
lc,s(z1)

(z1 − z2)2

d

dz

[
zNeNb(z+z−1)

]∣∣∣∣
z=z1

=
lc,s(z1)

(z1 − z2)2
zN−1
1 eNb(z1+z−1

1
)N [1+b(z1−z−1

1 )].

(B5)

By using z1 = −1/z2 and z1 + z2 = −2i/p = −1/b, we see that this part is 0 too, hence

the contribution of the pole at z = z1 is 0. We may therefore exclude this pole from the

integration contour, and rewrite eq. (B1)
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Ac,s1 =
2i

p2

∮

C1

dz
lc,s(z)

(z2 + b−1z − 1)2
zNeNbzeNbz−1

=
2i

p2

∞∑

n=0

∮

C1

dz
lc,s(z)

(z2 + b−1z − 1)2
eNbz (Nb)n

n!zn−N
,

(B6)

where C1 is the counterclockwise circle of radius smaller than |z1|, shown in Figure (A.1).

Inside this integration contour we have only the essential singularity at z = 0, and for

handling it, we represented the exponent with negative powers of z as a Laurent series. The

terms n ≤ N are analytic inside C1, hence contribute 0 to the integral, so by changing the

summation variable n′ = n − (N + 1) and remaining n′ to n we obtain

Ac,s1 =
2i

p2

∞∑

n=0

(Nb)n+N+1

(n + N + 1)!

∮

C1

dzLc,s(z)eNbz 1

zn+1
≡ 2i

p2

∞∑

n=0

(Nb)n+N+1

(n + N + 1)!

∮

C1

dz g(z),

(B7)

where we used again the definition of Lc,s(z) from eq. (A6), and the integrand has been

called g(z), to ease manipulations. We calculate now the residue of g(z)

Res(g, 0) =
1

n!

dn

dzn
[Lc,s(z)eNbz ]

∣∣∣∣
z=0

=
1

n!

n∑

m=0

(
n

m

)(
dm

dzm
Lc,s(z)

) (
dn−m

dzn−m
eNbz

)∣∣∣∣
z=0

,

(B8)

which comes out

Res(g, 0) = (Nb)n
n∑

m=0

(Nb)−m

(n − m)!m!

dm

dzm
Lc,s(z)|z=0, (B9)

We start with Lc. To handle this derivative we express it as

dm

dzm
Lc(z)

∣∣∣∣
z=0

=
dm+1

dzm+1

z

1 − b−1z − z2

∣∣∣∣
z=0

(B10)

The last rational function is the Fibonacci polynomials generating function, with argu-

ment b−1. Hence the result is (m + 1)! multiplied by the m + 1 Fibonacci polynomial. This

may be directly calculated by factorizing the Fibonacci generating function to obtain

dm

dzm
Lc(z)

∣∣∣∣
z=0

=
1√

b−2 + 4

dm+1

dzm+1

[
1

1 − z−1
1 z

− 1

1 − z−1
2 z

]∣∣∣∣
z=0

(B11)
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which results in

dm

dzm
Lc(z)

∣∣∣∣
z=0

= (m + 1)!

(
z−1
1

)m+1 −
(
z−1
2

)m+1

√
b−2 + 4

(B12)

or explicitly

dm

dzm
Lc(z)

∣∣∣∣
z=0

= (m + 1)!

(
b−1 +

√
b−2 + 4

)m+1 −
(
b−1 −

√
b−2 + 4

)m+1

2m+1
√

b−2 + 4
(B13)

The Ls case is handled similarly. We express:

dm

dzm
Ls(z)

∣∣∣∣
z=0

= ib
dm+1

dzm+1

2 − b−1z

1 − b−1z − z2

∣∣∣∣
z=0

(B14)

The last rational function is the Lucas polynomials generating function, with argument

b−1. Hence the result is (m + 1)! multiplied by the m + 1 Lucas polynomial. This may be

directly calculated by factorizing the Lucas generating function to obtain

dm

dzm
Ls(z)

∣∣∣∣
z=0

= ib
dm+1

dzm+1

[
1

1 − z−1
1 z

+
1

1 − z−1
2 z

]∣∣∣∣
z=0

(B15)

which results in

dm

dzm
Ls(z)

∣∣∣∣
z=0

= ib(m + 1)!
[(

z−1
1

)m+1
+
(
z−1
2

)m+1
]

(B16)

or explicitly

dm

dzm
Ls(z)

∣∣∣∣
z=0

= ib(m + 1)!

(
b−1 +

√
b−2 + 4

)m+1
+
(
b−1 −

√
b−2 + 4

)m+1

2m+1
(B17)

By using eqs. (B13), (B17), (B9) and (B7) and replacing b = −0.5ip we obtain a closed

form expression for Ac1 and Ac2, given in eqs. (88) and (89) respectively.
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