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Abstract

Steady state ion drift configurations are usually treated as time independent problems,

hence radiation losses are usually ignored. This assumption is not strictly true when the

number of charge carriers is small and their acceleration is big. According to Larmor

formula q2a2/(6πǫ0c
3), accelerating charges radiate. In spite of that, even if single charges

accelerate, in the continuum DC limit, there is no radiation. This challenge is encountered

in any plasma application based on a steady state ion drift, because ions accelerate under

the influence of the electric field. Even if we assume the model of an average speed, defined

by the average gas mobility multiplied by the electric field, the velocity changes because the

electric field is not constant in magnitude or direction. One remarks that in any curvilinear

DC electric current path, charge carriers are accelerated, raising the question of when

are radiation losses significant. This issue is best analyzed in a canonical configuration of

charges in circular motion. One single charge simply radiates power according to Larmor

formula. When distributing the charge over the circle, the destructive interference between

the field contributions of the different charges, reduce the radiated power so that it goes to

0 in the continuum DC limit.

Key words: radiation, electrostatics, accelerating charges

PACS: 52.30.-q, 41.20.-q
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1. INTRODUCTION

The radiation from an accelerating charge and the dumping force arising from it has a

long history starting with from Dirac [1]. Knowing that an accelerating charge radiates

energy according to Larmor formula, there must be a mechanism to supply this energy to

the charge, working against a dumping force. This dumping force is sometimes called “self

force” when one single charge is present, and it is equal to the differential energy loss along

the charge’s path, divided by the path length dW/dl. This force is actually the Lorentz

force F̄ = q(Ē+ v̄× B̄), but when dealing with a point charge a natural problem arises from

the fact that the fields Ē and B̄ are infinite at the charge’s location. This inconsistency

accompanies any single point charge problem, due to the fact that such charge has infinite

energy. Several works [1–3] deal with this issue, and other works [4, 5] deal with collection

of charges and mutual influences between the charges. This mutual influence needs to

be profoundly investigated when one wants to understand the behavior of charges in the

continuum DC limit. We know that in any curvilinear DC electric current path, charge

carriers are accelerated, but in spite of that, the radiation is 0.

This brings us back to the old “paradox” of the unstable electron orbiting around the

nucleus. When supposing that the electron orbits around the nucleus like the earth around

the sun, the question which arose was why doesn’t it radiate its energy away according to the

Larmor formula? This “paradox” is usually said to be solved by quantum mechanics, which

showed that there are constant energy levels of the electron. This statement is partially true,

but misses an important point. The Hamiltonian which led to this quantum solution did

not contain any dumping force term, hence clearly one obtains constant energy solutions.

The true reason is that in the quantum view, the electron is not localized, hence it exists

with equal probability at any azimuthal angle around the nucleus, or in other words, makes

a continuous DC current.

The objective of this work is to analyze by which mechanism the radiation from charges

goes to 0 in the DC limit. The key to understand this phenomenon is the destructive

interference and this issue is best analyzed in a canonical configuration of charges in circular

motion. The current work is done in a non relativistic framework.

The configuration and the terminology are explained in Section 2. In Section 3 we

calculate the fields and derive an expression for the radiated power, and in Section 4 we
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analyze the results and calculate some examples. The work is ended with some concluding

remarks.

2. THE CONFIGURATION

The configuration is shown in Figure 1.

FIG. 1: (color online) Charges Qk each one of charge q/N in circular motion on the xy plane at

radius b around the z axis. Here k goes from 1 to 3.

There are N charges of magnitude q/N each, moving with constant speed v in a cir-

cular path of radius b, hence the angular velocity is ω = v/b. The charges are uniformly

distributed, so that the arc between two neighboring charges is 2π/N radians.

The location of the charge k as function of time is given by:

r̄′k(t) = b[x̂ cos(ωt+ 2πk/N) + ŷ sin(ωt+ 2πk/N)] (1)

The fields propagate with the speed of light c. Hence the fields at the observer location

r̄ at time t are influenced by the motion of each charge, at an earlier (retarded) time.

Specifically, the fields are influenced by the motion of the charge k at time t′k so that

Rk ≡ |r̄ − r̄′k(t
′

k)| = c(t− t′k) (2)

At large distance from the charges, one may approximate:
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Rk ≈ r − b sin θ cos(ωt′k + 2πk/N − ϕ) (3)

hence the retarded time t′k may be calculated from the following implicit equation:

t′k = t− r/c+ (b/c) sin θ cos(ωt′k + 2πk/N − ϕ). (4)

Figure 2 emphasizes the meaning of retarded positions of the charges.

FIG. 2: (color online) The dark colored spheres show the charges at the current position at time

t and the light colored spheres show the retarded positions at times t′k. The retarded positions

are connected with dashed lines to the observer location, emphasizing that the field at observer is

determined by the charge’s velocities and accelerations at the retarded times.

It is convenient to define

φk ≡ ωt′k + 2πk/N − ϕ, (5)

ϕ′ ≡ ϕ− ω(t− r/c) (6)

and

p ≡ β sin θ (7)
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where β ≡ ωb/c = v/c is the charge’s velocity relative to the light velocity c. Using the

above, one may rewrite the implicit equation (4) as

φk = −ϕ′ + 2πk/N + β sin θ cosφk (8)

which may be solved numerically by setting a “1st guess” φk = −ϕ′ +2πk/N in the right

side of eq.( 8) and recalculate φk until convergence is obtained.

3. Fields and power calculation

To calculate the power radiated from the collection of charges in Figure 1, one needs only

the far fields, i.e. those who behave like 1/R. The far electric and magnetic fields due to a

charge Q moving with non relativistic velocity are given by [2, 7]:

ĒQ = Qµ0
−ā + (R̂ · ā)R̂

4πR
(9)

and

H̄Q = R̂× Ē/η0 = −Q
R̂ × ā

4πcR
(10)

where R̂ is the unit vector pointing from the charge’s position to observer, R is the

distance between the charge and the observer (as defined in eq. 2) and ā is the charge’s

acceleration. All the dynamical variables are evaluated at the retarded time (defined in

eq. 4). The constants µ0 = 1.2566×10−6H/m and η0 = 377Ω are the free space permeability

and the free space impedance, respectively.

For the collection of charges we need to sum the fields of the individual charges in Figure 1.

We first evaluate R̂k×āk = R̄k×āk/R for the charge k. For the circular motion āk = −ω2br̄′k,

so that R̄k × āk = (r̄ − r̄′k) × āk which simplifies to. After some algebra we obtain

R̂k × āk = ω2b[θ̂ sin φk − ϕ̂ cos θ cos φk] (11)

In the denominator of eqs. (9) and (10) we may set R = r, as always done for far field.

So we obtain
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H̄ =
N∑

k=1

H̄Qk = −
q/N

4πcr
ω2b[θ̂ Fs − ϕ̂ cos θ Fc] (12)

where the functions Fs and Fc are defined as

Fs(t, ϕ, θ, β,N) ≡

N∑

k=1

sinφk (13)

and

Fc(t, ϕ, θ, β,N) ≡
N∑

k=1

cosφk, (14)

Inverting eq. (10) we obtain Ē − η0

∑N
k=1 R̂k × H̄Qk, but in the far field R̂k may be

approximated by r̂ so the electric field simplifies to

Ē = µ0
q/N

4πr
ω2b[ϕ̂ Fs + θ̂ cos θ Fc] (15)

The power per unit of normal area (or Poynting vector) is given by, S̄ = Ē× H̄ = r̂E2/η0

which results in

S̄ = r̂

[
qω2b

4πcNr

]2

η0

∣∣∣ϕ̂ Fs + θ̂ cos θ Fc
∣∣∣
2

(16)

The total power is calculated via P = r2
∫ 2π

0
dϕ

∫ π

0
dθ sin θS̄ · r̂ which results in

P =
q2a2

6πǫ0c3
G(t, β,N) (17)

where ω2b has been replaced by the charges’ acceleration a, and the Larmor formula for

the radiation of a single charge has been factored out, so that:

G(t, β,N) ≡
3

8πN2

∫ 2π

0

dϕ

∫ π

0

dθ sin θ F (t, ϕ, θ, β,N) (18)

hence G = 1 for N = 1, for any t or β and the function F is

F (t, ϕ, θ, β,N) ≡
∣∣∣ϕ̂ Fs + θ̂ cos θ Fc

∣∣∣
2

= Fs2 + cos2 θ Fc2 (19)

This allows us to change to variable ϕ′ defined in eq. (6), obtaining for G
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G(t, β,N) =
3

8πN2

∫ 2π−ω(t−r/c)

−ω(t−r/c)

dϕ′

∫ π

0

dθ sin θ (Fs2 + cos2 θ Fc2), (20)

We see that if φk and ϕ′ satisfy eq. (8), also φk − 2π and ϕ′ + 2π satisfy it, hence cosφk

and sinφk are periodic functions of ϕ′, with a periodicity of 2π. Therefore, the dϕ′ integral

in eq. (20) may be evaluated over any period of 2π, showing that G (and therefore also the

radiated power P ) does not depend on time, so that we may simplify eq. (20) to

G(β,N) =
3

8πN2

∫ 2π

0

dϕ′

∫ π

0

dθ sin θ (Fs2 + cos2 θ Fc2). (21)

We redefined G to be time independent, and Fs and Fc in eqs. (13) and (14) become

functions of ϕ′ instead of t and ϕ.

For understanding the behavior of Fs and Fc in eqs. (13) and (14) we plot those functions

for different parameters, as follows.

Clearly for very small p in eq. (8), φk ≈ −ϕ′+2πk/N , hence the cosine or sine of φk equal

approximately to the cosine or sine of −ϕ′ + 2πk/N , so that both have harmonic shapes as

function of ϕ′. In such case both the cosines and the sines would sum to 0 because they are

separated by phases of 2π/N .

Let us compare the cosines first. As one observes from the (a) panels of Figures 3, 5, 6

and 4, the cosines sum always to some distorted cosine around 0.
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FIG. 3: (color online) The cosines in eq. (14) and their sum is shown in panel (a) and the sines in

eq. (13) and their sum is shown in panel (b) for N = 3 and p = 1.

For p = 0.5 the cosines are less distorted from the harmonic shape than for p = 1,

therefore they sum to values closer to 0, than for the p = 1 case. For example, the cosines
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FIG. 4: (color online) The cosines in eq. (14) and their sum is shown in panel (a) and the sines in

eq. (13) and their sum is shown in panel (b) for N = 10 and p = 0.5.
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FIG. 5: (color online) The cosines in eq. (14) and their sum is shown in panel (a) and the sines in

eq. (13) and their sum is shown in panel (b) for N = 10 and p = 1.
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FIG. 6: (color online) The cosines in eq. (14) and their sum is shown in panel (a) and the sines in

eq. (13) and their sum is shown in panel (b) for N = 3 and p = 0.5.
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for the case of p = 0.5 and N = 3 in Figure 6 sum to a distorted cosine of amplitude 0.243

while for the case of p = 1 and N = 3 in Figure 3 they sum to a distorted cosine of amplitude

0.7 . The effect of the number of charges N is always in lowering the amplitude of the sum

of cosines, for example in the case of p = 0.5 and N = 10 in Figure 4 the amplitude is 0.006

while for the case of p = 0.5 and N = 3 it is 0.243. To summarize, the cosines sum to higher

amplitudes as p gets closer to 1, and sum to lower amplitudes, as N gets bigger, tending to

0 if N tends to infinity.

The behavior of the sines can be understood by looking at Figure 3. The cosines in panel

(a) are distorted, so that the negative slope period of each is much shorter than the positive

slope period. Therefore the interval in which a sine is negative is much shorted than the

interval in which it is positive. Hence the sine functions have a positive “DC level”, and

therefore sum to a positive value with some ripple. The amplitude of this ripple gets bigger

as p gets closer to 1 - for example in the case of N = 3 the ripple’s amplitude is 1 for the

case p = 1 and 0.44 for the case p = 0.5, but gets smaller as N increases, tending to 0 for N

tending to infinity. Therefore the sine functions tend to sum to a constant positive value for

N → ∞. This value may be calculated by adding the average values of the sine functions,

as follows:

Av =
1

2π

∫ 2π

0

dϕ′ sin φk, (22)

and it does not matter for which k we calculate this average. We change variable from

ϕ′ to φk, and we find from eq. (8) that

dϕ′/dφk = −1 − p sinφk, (23)

getting:

Av = −
1

2π

∫ φk(0)−2π

φk(0)

dφk(1 + p sin φk) sinφk, (24)

where φk(0) is the value of φk at ϕ′ = 0. Now the integral dφk of sin φk over a period of

2π is 0, obtaining:

Av =
p

2π

∫ φk(0)

φk(0)−2π

dφk sin2 φk =
p

2π
π =

p

2
(25)
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because the integral on sin2 φk results π. Therefore summing those average values of N

charges results in

lim
N→∞

Fs =
Np

2
(26)

because the ripple’s amplitude goes to 0 for big N . For example in the case N = 3 and

p = 1 Figure 3, panel (b) the average value of Fs is 1.5 and for N = 3 and p = 0.5 (Figure 6)

Fs has the average value of 0.75 . For the case N = 10 and p = 0.5 (Figure 4) Fs has an

almost constant value of 2.5 .

Now we continue with the calculation of G in eq. (21). Rewriting eq. (8) for the charge

m instead of k results in φm = −ϕ′ + 2πm/N + p cos φm , which may be rewritten as

φm = −(ϕ′ − 2π(m− k)/N) + 2πk/N + p cosφm, (27)

showing that if we could explicitly express φk(ϕ
′) from eq. (8), φm would be the same

function of ϕ′ only shifted:

φk(ϕ
′) = φm(ϕ′ − 2π(m− k)/N) (28)

as also evident from Figures 3 - 4. Therefore both Fs and Fc functions remain unchanged

for a shift of multiples of 2π/N , say:

Fc(ϕ′ + 2π/N), θ, β,N) =
N∑

k=1

cosφk(ϕ
′ + 2π/N) =

N∑

k=1

cosφk+1(ϕ
′). (29)

and the sum being on all charges (and k is modulo N), we are left with the same result.

We may therefore rewrite in eq. (21)

∫ 2π

0

dϕ′ =

N−1∑

n=0

∫ 2π(n+1)/N

2πn/N

dϕ′ (30)

and after changing variable ϕ′′ = ϕ′ − 2πn/N , we are left with N identical integrals over

the period 0 to 2π/N . For simplicity we rename ϕ′′ back to ϕ′ and rewrite the function G

as:

G(β,N) =
3

8πN

∫ 2π/N

0

dϕ′

∫ π

0

dθ sin θ (Fs2 + cos2 θ Fc2), (31)
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and this will significantly reduce the time of a numerical integration. Now looking at

the θ dependence of Fs and Fc, we remark from eq. (8) that φk depends on sin θ, hence

it is invariant under replacing θ by π − θ, and so is cos2 θ. We may therefore replace the

integration from 0 to π by twice the integration from 0 to π/2, getting

G(β,N) =
3

4πN

∫ 2π/N

0

dϕ′

∫ π/2

0

dθ sin θ (Fs2 + cos2 θ Fc2), (32)

Now we change to the variable p defined in eq. (7) and rewrite eq. (32) obtaining:

G(β,N) =
3

4πNβ2

∫ 2π/N

0

dϕ′

∫ β

0

dp p
(
Fs2/

√
1 − (p/β)2 + Fc2

√
1 − (p/β)2

)
, (33)

For the case of N = 1 one may show analytically that G = 1 for any β. Fc2 and Fs2

reduce to cos2 φ1 and sin2 φ1 which equal 1
2
(1± cos(2φ1)) respectively, and we may perform

the dϕ′ integration on Fs2 or Fc2 by the change of variable dϕ′/dφ1 defined in eq. (23),

obtaining

∫ 2π

0

dϕ′
1

2
(1 ± cos(2φ1)) = −

∫ φ1(0)−2π

φ1(0)

dφ1(1 + p sinφ1)
1

2
(1 ± cos(2φ1)) = π (34)

which is independent on p, so that one is left with the dp integral in eq. (33), which

results 4β2/3, completing the proof.

For big values of N we know that Fc tends to 0 and Fs tends to Np/2 (see eq. (26)), so

that we may also obtain an analytical result for N → ∞:

lim
N→∞

G(β,N) =
3

4πNβ2

∫ 2π/N

0

dϕ′

∫ β

0

dp p
(Np/2)2

√
1 − (p/β)2

(35)

The integrand does not depend on ϕ′, so we obtain:

lim
N→∞

G(β,N) =
3

8β2

∫ β

0

dp p
p2

√
1 − (p/β)2

, (36)

and the last integral is easily solved by the change of variables p = β cosψ, resulting

2β4/3. Hence we obtain the final result:
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lim
N→∞

G(β,N) =
β2

4
(37)

We perform now the calculation in eq. (33) numerically. In this calculation one has to

find iteratively φk in eq. (8) for each value of ϕ′ and p, for values of k between 1 and N .

The results are shown as function of N , for different values of β in Figure 7.
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FIG. 7: Result of G (eq. (33)) as function of the number of charges N , for different values of β.

For big N we get the asymptotic value β2/4 (see eq. (37)).

4. Analysis of the results and examples

The results obtained in the previous section are somehow surprising and unexpected.

One expects that for a very big number of charges, the current distribution approaches a

continuum DC, and hence the radiated power should go to 0.

However, we will try to interpret the meaning of this result. Looking at the electric field

in eq. (15), we see that its ϕ̂ component is proportional to Fs, hence tends to a DC level of

Np/2 = Nβ sin θ/2 for large N , so that it has a large DC level around θ = π/2 and goes to

0 for θ = 0 and π. Naturally, the θ̂ component of the magnetic field in eq. (12) behaves the
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same way. So for large N the far E and H fields tend to a “DC spherical wave”, polarized in

the ϕ̂ direction of intensity proportional to sin θ. But we know there is no such thing as “DC

wave”, and far 1/R depending DC fields. The reason for this anomaly may be explained by

looking at the circular source current density, which is in cylindrical coordinates (ρ, ϕ, z)

Jϕ(ρ, ϕ, z, t) =
qv

Nb
δ(z)δ(ρ− b)

N∑

k=1

δ[ϕ− (ωt+ 2πk/N)]. (38)

In the limit of N → ∞, the δ functions get closer to each other, so that
∑N

k=1 δ[ϕ −

(ωt + 2πk/N)] should tend to a uniform distribution between 0 < ϕ < 2π having the area

N . Hence this sum should tend to N
2π

, this way obtaining the time independent DC current

distribution:

Jϕ DC
(ρ, ϕ, z) =

qv

Nb
δ(z)δ(ρ− b)

N

2π
=

qv

2πb
δ(z)δ(ρ− b) = I0δ(z)δ(ρ− b) (39)

where I0 = qv
2πb

is the DC current.

However, this mathematical limit of the sum of δ functions does not really exist, so that

no matter how big N is, Jϕ in eq. (38) remains time dependent, and so do E and H in

eqs. (15) and eq. (12).

Another way of understanding this anomaly is by looking at the “self force” which actually

is close related to the radiation resistance [4, 5]. As long as the charges are discreet, no matter

how close they are to each other, one needs to apply a circular force P/v to rotate them,

because they still interact. Only in the continuous case, the charge may rotate by inertia,

no need for the circular force.

However, this anomaly arises only for “relativistic velocities”, and this work is in the

non relativistic framework. For the non relativistic case the results obtained in the previous

section seem reliable, and we are going to test them for a current loop of radius b = 10 cm,

carrying a DC current of 10 Ampers. We take the wire to be copper, having n = 8.46×1028

free electrons per cubic meter. We take the cross section radius to be 1 mm so that the

cross section is A = π × 10−6m2. The current can be expressed as I0 = enAv, where

e = 1.6×10−19 C, so we obtain v = 2.35×10−4 m/s, or β = v/c = 7.84×10−13. The number

of charge carriers is so big, that one may use the asymptotic result forG = β2/4 = 1.54×1025.

The centripetal acceleration is a = v2/b = 5.53 × 10−07m/sec2, so that the radiated power
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according to eq. (17), using q = e is

P |10A loop =
e2a2

6πǫ0c3
G(N → ∞) = 2.7 × 10−91watts. (40)

This result is much below any ohmic losses, so it might be verifiable only at 0 Kelvin.

Let us consider another example of DC ion drift in a EHD lifter, as analyzed in [6].

For an application of 22.8 kV to the lifter, it lifted a mass of 13.9 g at least, consuming a

current of I0 = 0.76 mA from the power source. The average charge density in this state was

2.265 × 104C/m3 or dividing by the electron charge, n = 1.42 × 1015 ions per cubic meter.

The average cross section of this configuration is A = 2.5 × 10−3m2, so expressing again

I0 = enAv, we obtain the average velocity of the carriers v = 1338 m/sec, or β = v/c =

4.46 × 10−6. Alternatively one obtains the same result by multiplying the average electric

field which is about half the corona inception field 13.4 MV/m (according to Peek formula

- see [6], eq. (32)) by the ion mobility which is 2 × 10−4m2/V sec). The average radius of

curvature in this configuration is b = 5 cm, so we may calculate the average acceleration

a = v2/b = 35.8× 106m/sec2. The big number of carriers justifies the use of the asymptotic

result for G = β2/4 = 4.97 × 10−12. So we calculate the radiated power:

P |lifter =
e2a2

6πǫ0c3
G(N → ∞) = 3.62 × 10−50watts. (41)

which is probably impossible to measure.

CONCLUSIONS

In this work we calculated non relativistically the power radiated by charges in centripetal

acceleration. Those charges in the limit of continuous distribution around the motion circle

(N → ∞) represent a DC loop. We showed that for charges at high velocity (close to the

speed of light) the wave fronts of the individual charges are distorted cosine and sine func-

tions, hence summing to non zero, but the sum decreases as the number of charges increases.

However for charges at low velocity the wave fronts are almost undistorted harmonics, hence

they sum to zero for very few charges. In the limit of zero velocity, even two charges interfere

destructively, their field summing to zero.

Our calculation is non relativistic and shows some anomalies in the relativistic limit.
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Those will be cleared out in a future relativistic work, which is ongoing. Also, a quantum

analysis to look for the connection between radiation (i.e. radiative electron transition) and

electron localization and acceleration would be interesting to carry out.
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