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Abstract

Kramers’ turnover theory, based on the dynamics of the collective unstable normal mode

(also known as PGH theory) is extended to motion of a particleon a periodic potential inter-

acting bilinearly with a dissipative harmonic bath. This isachieved by considering the small

parameter of the problem to be the deviation of the collective bath mode from its value along

the reaction coordinate, defined by the unstable normal mode. With this change, the effective

potential along the unstable normal mode remains periodic,albeit with a renormalized mass,

or equivalently a renormalized lattice length. Using second order classical perturbation theory

this not only enables the derivation of the hopping rates andthe diffusion coefficient, but also

the derivation of finite barrier corrections to the theory. The analytical results are tested against

numerical simulation data for a simple cosine potential, Ohmic friction, and different reduced

barrier heights.
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The classical theory of surface diffusion on a periodic potential is well understood. For a particle

whose motion is governed by a generalized Langevin equation, in the limit of weak damping, the

diffusion coefficient diverges as 1/γ whereγ is the friction coefficient. The divergence is a result

of the fact that when the friction is weak, the rate of escape of the particle from a given well goes

asγ 1 but the mean squared path length goes asγ−2. An escaping particle will cross many barriers

before being retrapped in a well, since its motion is almost ballistic. Conversely, in the strong

friction limit, the rate of escape of the particle goes as 1/γ and the mean squared path length is that

of a single jump, since in the strong damping limit, an escaping particle is immediately retrapped

in the adjacent well. The diffusion coefficient is thus a monotonically decreasing function of the

friction strength.

Multiple hops in surface diffusion have been observed experimentally2–4 and numerically.5–8

The challenge of deriving an expression valid for any friction strength was met by Mel’nikov9 who

showed how, with the use of a master equation, a Gaussian probability kernel for the exchange of

energy of the particle with the bath and the Wiener Hopf method one may derive explicit ex-

pressions for the hopping probabilities and the diffusion coefficient when the escape is dominated

by the energy exchange of the particle with the bath. In the moderate to strong damping limit,

where energy exchange is rapid and spatial diffusion sets in, he multiplied the expression for the

diffusion coefficient with the Kramers-Grote-Hynes spatial diffusion factor1,10 for the rate. The

resulting theory was tested against numerical simulation in Ref.8

A related problem is known as Kramers’ turnover theory.11,12Kramers derived expressions for

the escape rate in the energy and spatial diffusion limits, but not for the whole range of friction

strengths. This problem was solved in two steps. Mel’nikov and Meshkov (MM)13 solved the

problem for the energy diffusion limit, Pollak, Grabert andHänggi (PGH)14 solved it for the

whole range of friction. The PGH method employed a Hamiltonian formalism and considered

the dynamics along the unstable collective mode, defined by the dynamics in the vicinity of the

parabolic barrier. Mel’nikov extended his approach to periodic potentials.9 The original PGH

formalism was not well suited to this problem, since the effective potential for the motion along
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the unstable mode was not periodic. The first challenge dealtwith in this paper is the extension of

the PGH method to periodic potentials, that is to surface diffusion.

A second challenge is to derive finite barrier corrections for the diffusion. Pollak and Talkner15

derived the leading order correction term to the Kramers-Grote-Hynes expression for the rate in

the spatial diffusion limited regime, which gives corrections of the order ofkBT/V ‡ (T is the

temperature,V ‡ is the barrier height). Mel’nikov16 then derived finite barrier corrections for the

energy diffusion limited regime. These were extended to thePGH formalism only recently, both

in its old form17 as well as in its more modern formulation.18 However, to date, neither MM nor

PGH have derived finite barrier corrections for the energy diffusion limited regime of motion on a

periodic potential. This is the second challenge addressedin this paper.

In Section II we review the classical perturbation theory which underlies our revised PGH the-

ory, as described in Ref.18 Then in Section III we apply the formalism to the problem of diffusion

on a periodic potential, deriving explicit formulae for thehopping distribution and the diffusion

coefficient. In Section IV we introduce finite barrier corrections and derive them for the hopping

distribution and thus also for the diffusion coefficient. The analytic results of Section III and IV

are then tested against numerical simulation data in Section V. The paper ends with a Discussion

of the results and further extensions.

II. Perturbation theory for surface diffusion

II.1 Preliminaries

The classical dynamics of the generic system is that of a particle with massM and coordinateq

whose classical equation of motion is a Generalized Langevin Equation (GLE) of the form:

Mq̈+
dV (q)

dq
+M

∫ t

0
dt ′γ

(

t − t ′
)

q̇
(

t ′
)

= F (t) . (2.1)
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F (t) is a Gaussian random force with zero mean and correlation function

〈

F (t)F
(

t ′
)〉

= MkBT γ
(

t − t ′
)

. (2.2)

γ (t) is the friction function,kB is Boltzmann’s constant andT is the temperature. The potential is

assumed to be periodic, with a well atq = 0+nl, n = 0,±1,±2, ... andl is the distance between

subsequent wells (lattice length). The wells are separatedby barriers, located atq = q‡ + nl,

n = 0,±1,±2, .... The barrier heights areV ‡. The wells are characterized with the harmonic

frequencyωa and the barriers with parabolic barrier (imaginary) frequency ω‡. Without loss of

generality, the potential may be written as

V (q) = −1
2

Mω‡2q2+V1(q) (2.3)

andV1(q) is termed the nonlinear part of the potential function.

When one ignores the nonlinear part of the potential the resulting Hamiltonian has a quadratic

form and may be diagonalized.19 We denote the (unstable) mass weighted normal mode and mo-

mentum asρ andpρ respectively and the stable bath normal mode coordinates and momenta asy j

andpy j respectively. The full Hamiltonian may then be expressed as:

H =
p2

ρ

2
− 1

2
λ ‡2ρ2+V1(q)+

1
2

N

∑
j=1

[

p2
y j

+λ 2
j y2

j

]

(2.4)

whereλ j denoted the frequency of the j-th normal mode.λ ‡ denotes the unstable normal mode

barrier frequency and it may be obtained through the Kramers-Grote-Hynes relation:1,10

λ ‡2+ γ̂
(

λ ‡
)

λ ‡ = ω‡2 (2.5)

whereγ̂ (s) stands for the Laplace transform of the time dependent friction. The system coordinate
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q is expressed in terms of the normal modes as

√
Mq = u00ρ +u1σ (2.6)

with

u1σ =
N

∑
j=1

u j0y j (2.7)

and

u2
1 = 1−u2

00 =
N

∑
j=1

u2
j0 (2.8)

The nonlinear part of the potentialV1(q) couples the motion of the unstable normal mode to

that of the stable normal modes. The matrix elementu j0 is the projection of the system coordinate

on the j-th normal mode. The projection of the system coordinate on the unstable modeu00 is

given by the relation:14

u2
00 =

[

1+
1
2

(

γ̂
(

λ ‡
)

λ ‡ +
∂ γ̂ (s)

∂ s
|s=λ ‡

)]−1

. (2.9)

The normal mode "friction kernel" is defined as:

K
(

t − t ′
)

=
N

∑
j=1

u2
j0

λ 2
j

cos
[

λ j
(

t − t ′
)]

. (2.10)

Using properties of the normal mode transformation (see forexample Eq. 2.17 of Ref.19) one may

readily express the Laplace transform of the kernel as

K̂ (s) =

(

su2
00

λ ‡2(s2−λ ‡2)
+

s+ γ̂ (s)
ω‡2(ω‡2− s2− γ̂ (s)s)

)

(2.11)

so that it is known in the continuum limit. The spectral density of the stable modes is defined as:

ϒ(λ ) =
π
2

N

∑
j=1

u2
j0

λ j
[δ (λ −λ j)−δ (λ +λ j)] (2.12)
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so that:

ϒ(λ ) = λRe
[

K̂(iλ )
]

=
λRe [γ̂ (iλ )]

(ω‡2+λ 2)
2
+λ 2γ̂ (iλ ) γ̂ (−iλ )

. (2.13)

II.2 The zero-th order motion

When the damping is weak, one may assume that the projection of the system coordinate onto the

stable normal modes is small so that the parameteru1 (Eq. 2.8) may be considered as the small

parameter for the dynamics. However, if, as in PGH theory, one naively considers the zero-th

order motion as being determined by settingu1 = 0 in the Hamiltonian, then the potential for the

motion along the unstable mode−1
2λ ‡2ρ2 +V1(u00ρ) is no longer periodic and the perturbation

theory will fail as one moves away from the primary well. To overcome this difficulty, following

the derivation in Ref.18 we rewrite the Hamiltonian as:

H =
p2

ρ

2
+V

(

u00ρ +u1σ√
M

)

+
1
2

ω‡2(u00ρ +u1σ)2− 1
2

λ ‡2ρ2 +
1
2

N

∑
j=1

[

p2
y j

+λ 2
j y2

j

]

. (2.14)

We then defineσ∗ (ρ) by demanding that

ω‡2(u00ρ +u1σ∗)2 = λ ‡2ρ2. (2.15)

and redefine the coordinateσ by using the notation

u1σ = u1σ∗ +u1∆σ (2.16)

so that the "small" deviation fromu1σ∗ is:

u1∆σ = u1σ +

(

u00−
λ ‡

ω‡

)

ρ. (2.17)

6



The full Hamiltonian may now be rewritten as:

H =
p2

ρ

2
+V

[

1√
M

(

λ ‡

ω‡ρ +u1∆σ
)]

+
1
2

N

∑
j=1

[

p2
y j

+λ 2
j y2

j

]

+ω‡λ ‡ρu1∆σ +
1
2

ω‡2u2
1∆σ2 (2.18)

andu1∆σ is readily identified as the "small parameter" of the problem. Setting it equal to zero now

implies that the potential along the unstable normal mode isV
(

1√
M

λ ‡

ω‡ ρ
)

and this zero-th order

potential is periodic, albeit with a renormalized lattice length

lρ√
M

=
ω‡

λ ‡ l ≥ l. (2.19)

For a parabolic barrier potential one readily finds that:

Vpb

[

1√
M

(

λ ‡

ω‡ρ +u1∆σ
)]

+ω‡λ ‡ρu1∆σ +
1
2

ω‡2u2
1∆σ2 = −1

2
λ ‡2ρ2

(2.20)

in other words, for a parabolic barrier we regain the separable dynamics of the normal modes. Any

coupling between the unstable mode and the stable modes necessarily comes from the nonlinear

part of the potential.

The zero-th order dynamics of the unstable normal mode will then be determined by the zero-th

order unstable mode Hamiltonian

Hρ =
p2

ρ

2
+V

(

λ ‡
√

Mω‡
ρ
)

=
p2

ρ

2
− 1

2
λ ‡2ρ2+V1

(

λ ‡
√

Mω‡
ρ
)

. (2.21)

Close to any barrier top, the zero-th order barrier remains the same as before, it is quadratic in

the unstable mode coordinate. The central difference between this representation and the "stan-
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dard" PGH formalism is that the argument of the nonlinear part of the potential has changed from

u00ρ/
√

M to λ ‡ρ/
(√

Mω‡
)

. This means that the shape of the potential has not changed, only the

effective mass of the motion is nowMω‡2/λ ‡2≥ M, or in other words, friction has led to a heavier

effective mass. The zero-th order dynamics of the bath is that of a collection of uncoupled stable

harmonic oscillators.

II.3 First order perturbation theory

To first order the Hamiltonian is expanded as:

H = Hρ +V ′
1

(

λ ‡
√

Mω‡
ρ
)

u1∆σ√
M

+
1
2

N

∑
j=1

[

p2
y j

+λ 2
j y2

j

]

(2.22)

where the prime denotes differentiation with respect to theargument. The first order equation of

motion for thej-th bath oscillator is:

ÿ jt ,1 = −λ 2
j y jt ,1−

u j0√
M

V ′
1

(

λ ‡
√

Mω‡
ρt,0

)

. (2.23)

This is a forced oscillator equation of motion which is readily solved

y jt ,1 = − u j0√
M

∫ t

−∞
dt ′

sin
[

λ j (t − t ′)
]

λ j
V ′

1

(

λ ‡
√

Mω‡
ρt ′,0

)

. (2.24)

Using the notationβ = 1/(kBT ), following the PGH methodology, the (reduced) energy gained

by the bath as the unstable mode traverses from one barrier over the well to the adjacent barrier is

given by:

δ ≡ β
2M

∫ ∞

−∞
dt
∫ ∞

−∞
dt ′V ′

1

(

λ ‡ρt,0√
Mω‡

)

∂ 2K (t − t ′)
∂ t∂ t ′

V ′
1

(

λ ‡ρt ′,0√
Mω‡

)

. (2.25)

This may then be recast in the more convenient form:

δ =
β

2πM

∫ ∞

−∞
dλλϒ(λ )

∣

∣

∣

∣

∫ ∞

−∞
dt exp(−iλ t)V ′

1

(

λ ‡ρt,0√
Mω‡

)∣

∣

∣

∣

2

. (2.26)
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II.4 Second order perturbation theory

In anticipation of the derivation in the next section of finite barrier corrections to the hopping rates

and the diffusion coefficient, it is necessary to consider the change in time up to second order inu1

of the bath energy defined as:

EB,t =
1
2

N

∑
j=1

[

p2
y j,t +λ 2

j y2
j,t

]

. (2.27)

The exact equation of motion for the j-th bath stable mode oscillator is:

d2y jt

dt2 = −λ 2
j y jt −V ′

1

(

1√
M

(

λ ‡

ω‡ρt +u1∆σt

))

u j0√
M

(2.28)

so that to second order:

d2y jt ,2

dt2 = −λ 2
j y jt ,2−V ′′

1

(

λ ‡
√

Mω‡
ρt

)

u j0√
M

(

λ ‡
√

Mω‡
ρt,1+

1√
M

u1∆σt,0

)

. (2.29)

This is again a forced oscillator equation of motion, which is readily solved, provided that the first

order correction to the unstable mode motion,ρt,1, is known.

The exact equation of motion for the unstable mode is:

d2ρt

dt2 = λ ‡2ρt −
u00√

M
V ′

1

(

1√
M

(

λ ‡

ω‡ρt +u1∆σt

))

(2.30)

so that the first order equation is:

d2ρt,1

dt2 = λ ‡2ρt,1−
u00

M
V ′′

1

(

1√
M

λ ‡

ω‡ρt,0

)(

λ ‡

ω‡ρt,1+u1∆σt,0

)

.

(2.31)

This parametric forced oscillator equation of motion may besolved using energy conserving per-
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turbation theory.18 One readily finds that:

ρt,1 = −pρt ,0

∫ t

−∞
dt ′

1

p2
ρt′ ,0

∫ t ′

−∞
dt ′′

1√
M

u1σt ′′,0

[

d
dt ′′

V ′
1

(

λ ‡
√

Mω‡
ρt ′′,0

)]

.

(2.32)

and we ignored a term which is of orderu00− λ ‡

ω‡ since this is second order inu1.

As described in Ref.,17 it is then a matter of some algebra to show that to second orderthe

average energy lost by the system as it traverses from one unstable mode barrier to the next is a

sum of two terms:

β 〈EB〉∞ −β 〈EB〉−∞ ≡ δ −βDE2 ≡ δ (1−µ) (2.33)

and this defines the expansion parameterµ to be used below. The first termδ is the average energy

lost to the bath atT = 0 and is given in Eqs. 2.25 and 2.26. The temperature dependent contribution

which expresses the fact that the thermal bath will transferenergy to the system is readily found to

be:

βDE2 = − 1
M

∫ ∞

−∞
dt

dV ′
1

(

λ ‡√
Mω‡ ρt

)

dt

∫ t

−∞
dt ′

1

p2
ρt′ ,0

∫ t ′

−∞
dt ′′

∂K (t ′′− t)
∂ t

dV ′
1

(

λ ‡√
Mω‡ ρt ′′,0

)

dt ′′

=
2
π

∫ ∞

0
dλϒ(λ )

(

∫ ∞

−∞
dtX (t)cos

[

λ jt
]

[

d
dt

V ′
1

(

λ ‡
√

Mω‡
ρt

)])

·
(

∫ ∞

−∞
dt ′′sin

[

λ jt
′′]
[

d
dt ′′

V ′
1

(

λ ‡
√

Mω‡
ρt ′′,0

)])

(2.34)

where the last two lines are a more convenient form for computational purposes, since one integra-

tion has been carried out. Here, we used the notation

X (t) =

∫ t
dt ′

1

p2
ρt′ ,0

= −X (−t) . (2.35)

A second aspect is that in principle the energy loss derived thus far is only at the barrier energy.

In principle though the energy loss is energy dependent. As shown in Ref.17 this implies that to
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second order in the coupling between the system and the bath and to lowest order in the expansion

in energy (ε = βE), the average energy loss is

β 〈∆E〉 = δ (1−µ + µε) . (2.36)

This relation lies at the heart of the finite barrier corrections to the hopping rates and the diffusion

coefficient.

III. Turnover theory for surface diffusion

The j-th well is bounded by two barriers, one from the left and the other from the right.f +
j (ε) de-

notes the flux of particles at reduced energyε approaching the right barrier of thej-th well moving

from left to right while f−j (ε) denotes the flux of particles approaching the left barrier ofthe j-th

well, moving from right to left. Following the derivation ofMelnikov9 and as also described in

Ref.20 one has that at steady state, the fluxf +
j (ε) is the sum of the fluxf−j (ε ′) reflected from the

barrier with reflection probabilityR(ε ′) returning to the right barrier with energyε and the flux of

particles coming from the adjacent well, approaching thej−1 barrier and transmitted through it

with transmission probabilityT (ε ′) then reaching the right barrier with energyε. The steady state

equation is thus

f +
j (ε) =

∫ ∞

−∞
dε ′P

(

ε|ε ′
)

[

f−j
(

ε ′
)

R
(

ε ′
)

+ f +
j−1

(

ε ′
)

T
(

ε ′
)

]

. (3.1)

whereP(ε|ε ′) is the conditional probability that a particle initiated atsay the left barrier with

energyε ′ will arrive at the adjacent barrier with energyε. Within the turnover formalism, the

kernel is the Gaussian

P0
(

ε|ε ′
)

=
1√
4πδ

exp

[

−(ε − ε ′ +δ )2

4δ

]

(3.2)

where the zero subscript is used to denote that this kernel implies that the average energy lost upon

one traversal from left to right (or equally from right to left) is δ . It does not include in it effects
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such as the energy and temperature dependence of the averageenergy loss, used below to derive

finite barrier corrections to the turnover theory. Importantly, it obeys detailed balance.

The reflection and transmission coefficients are the quantumparabolic barrier estimates

R(ε) =
1

1+exp(aε)
,T (ε) =

exp(aε)

1+exp(aε)
,a =

2π
h̄βλ ‡ . (3.3)

In this paper we consider exclusively the classical dynamics so that at the end of the derivation we

take the limit that̄h → 0, or equivalentlya → ∞.

The boundary conditions on the fluxes are that initially the particle is located in thej = 0 well

with a thermal distribution so that

f±j (ε)ε→−∞ = δ j0
C

2π h̄β
exp(−ε) (3.4)

whereδ j0 is the Kronecker "delta" function. In the spatial diffusionlimited regime, only nearest

neighbor hops are allowed. The coefficientC is chosen so that in this limit, the rate of escape from

the initial well is just twice the spatial diffusion rate (Γsd) for escape over one of the two adjacent

barriers. Or more formally

C = Γsd sin
(π

a

) 2π
λ ‡ . (3.5)

The spatial diffusion escape rate is

Γsd = ΓT ST
λ ‡

ω‡κFB. (3.6)

whereΓT ST is the escape rate estimate without taking frictional effects into account, that is

ΓT ST =
2exp

(

−βV ‡
)

(2πMβ )1/2∫ ∞
−∞ dqexp(−βV (q))θ

(

q+ l
2

)

θ
( l

2 −q
)

(3.7)

where the factor of two in the numerator comes from the fact that the particle can escape from the

well in either direction. We assumed that the initial well ofthe periodic surface is located atq = 0.
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κFB is the finite barrier correction to the rate in the spatial diffusion limited regime, as given in

Ref.15

From the symmetry of the periodic potential we note that

f±j (ε) = f∓− j (ε) . (3.8)

The rate of trapping in the j-th well is by definition:

Γ j =
∫ ∞

−∞
dεT (ε)

[

f +
j−1(ε)+ f−j+1(ε)− f−j (ε)− f +

j (ε)
]

. (3.9)

The turnover theory for surface diffusion is then aimed at deriving an explicit expression for the

ratesΓ j for any value of the friction.

For this purpose one defines the discrete Fourier transform

N (ε,k) = R(ε)
∞

∑
j=−∞

exp

[

i

(

j +
1
2

)

k

]

f +
j (ε) . (3.10)

The double sided Laplace transform is defined as

g̃(is) =
∫ ∞

−∞
dε exp(−εs)g(ε) . (3.11)

Using the fact thatP0(ε|ε ′) = P0(ε − ε ′) we use the definition of the discrete Fourier transform

and the integral equation 3.1 to find that

Ñ (is,k)+ Ñ [i(s−a) ,k] = exp(ik) P̃0(is)
(

Ñ [i(s−a) ,k]+ Ñ (is,−k)
)

. (3.12)

We then note that

P̃0(is) = exp
[

δ
(

s2+ s
)]

(3.13)
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is real and

Re
[

Ñ (is,−k)
]

= Re
[

Ñ (is,k)
]

(3.14)

while

Im
[

Ñ (is,−k)
]

= −Im
[

Ñ (is,k)
]

. (3.15)

Separating the real and imaginary parts in Eq. 3.12 and rearranging leads to the relatively simple

result (Eq. 2.13 of Ref.20):

ImÑ [i(s−a) ,k] = −G(is,k) ImÑ (is,k) (3.16)

with

G(is,k) =
1− P̃2

0 (is)

1+ P̃2
0 (is)−2P̃0(is)cos(k)

. (3.17)

Solution of the integral equation 3.16 will then lead to the desired hopping rates. To see this,

we use the Fourier representation of the Kronecker delta function:

δl, j =
1

2π

∫ 2π

0
dkexp[i(l− j)k] (3.18)

to note that:

1
2π

∫ 2π

0
dkexp

(

−i

(

l +
1
2

)

k

)

Ñ (−ia,k) =

∫ ∞

−∞
dεT (ε) f +

l (ε) . (3.19)

From Eq. 3.9 one then finds that:

Γ j = −2
π

∫ 2π

0
dkcos( jk)sin

(

k
2

)

Im
[

Ñ (−ia,k)
]

. (3.20)

It remains then to solve the integral equation 3.16, this follows the same steps as in the Ap-
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pendix of Ref.21 Using the notation

Ñ2(is,k) = − sin
[

k
2

]

2sin
[

π(s+1)
a

]Γsd sin
(π

a

)

(3.21)

implies that

Ñ2 [i(s−a) ,k] = −Ñ2(is,k) . (3.22)

This is then rewritten as:

ImÑ (is,k) = Ñ1(is,k)Ñ2(is,k) (3.23)

so that the integral equation takes the form:

Ñ1 [i(s−a) ,k] = G(is,k) Ñ1(is,k) . (3.24)

Defining

g̃(is,k) = ln Ñ1(is,k) (3.25)

we then have that:

g̃ [i(s−a) ,k]− g̃(is,k) = lnG(is,k) . (3.26)

This equation is then readily solved (see the Appendix of Ref.21):

g̃(is,k) =
1

2ia

∫ z+i∞

z−i∞
dy lnG(iy,k)

[

cot

(

π (s− y)
a

)

+cot

(

π (y+1)

a

)]

. (3.27)

Choosingz = −1/2 and shifting the contour such thatiy = τ − i/2 gives

g̃(−ia,k) =
1
a

∫ ∞

−∞
dτ lnG

(

τ − i
2
,k

)

sinπ
a

[

cosh
(

2πτ
a

)

−cosπ
a

] . (3.28)
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From Eq. 3.20 one then obtains the central result:

Γ j = −Γsd

π

∫ 2π

0
dkcos( jk)sin2

(

k
2

)

exp

(

1
a

∫ ∞

−∞
dτ lnG

(

τ − i
2
,k

)

sinπ
a

[

cosh
(

2πτ
a

)

−cosπ
a

]

)

(3.29)

and this is precisely Eq. 2.15 of Ref.20

The diffusion coefficient is given in terms of the partial rates as:

D =
1
2

l2
∞

∑
j=−∞

j2Γ j. (3.30)

Noting the discrete Fourier representation of the Dirac "delta" function

∞

∑
m=−∞

δ (k +2mπ) =
1

2π

∞

∑
j=−∞

exp(i jk) =
1

2π

∞

∑
j=−∞

cos( jk) (3.31)

so that:
∞

∑
j=−∞

j2cos( jk) = −2π
∞

∑
m=−∞

d2δ (k +2mπ)

dk2 . (3.32)

one derives the explicit expression for the diffusion coefficient:

D =
1
2

Γsd l2exp

(

1
a

∫ ∞

−∞
dτ ln

[

1+ P̃0
(

τ − i
2

)

1− P̃0
(

τ − i
2

)

]

sinπ
a

[

cosh
(

2πτ
a

)

−cosπ
a

]

)

(3.33)

and this is formally the same as Eq. 2.16 of Ref.20

All the expressions derived thus far are valid in a semiclassical limit, in which the temperature is

above the crossover temperature between deep tunneling andthermal activation.11 Their classical

limit, which is of interest in this paper, is obtained by letting a → ∞. This implies that the hopping

rates are:

Γ j →−Γsd

π

∫ 2π

0
dkcos( jk)sin2

(

k
2

)

exp

(

1
2π

∫ ∞

−∞
dτ lnG

(

τ − i
2
,k

)

1
[

τ2+ 1
4

]

)

(3.34)
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and the diffusion coefficient is:

D → 1
2

Γsd l2exp

(

1
2π

∫ ∞

−∞
dτ ln

[

1+ P̃0
(

τ − i
2

)

1− P̃0
(

τ − i
2

)

]

1
[

τ2+ 1
4

]

)

. (3.35)

The difference between these results and those of Refs.9 and20 is in the evaluation of the energy

loss. In contrast to the MM energy loss13 which diverges linearly with the friction, or the "stan-

dard" PGH energy loss14 which is not monotonic with the increase of friction, in the present theory

the energy loss is given in Eqs. 2.25 and 2.26. This expression gives an energy loss which in-

creases monotonically with the friction, reaching a constant in the high friction limit. It is also

valid for memory friction provided that the memory time doesnot become too long.

IV. Finite barrier corrections to the turnover theory for su rface

diffusion

The conditional probability kernelP0(ε|ε ′) implies that the averaged (reduced) energy loss isδ or

it is equivalent to setting the expansion parameterµ in Eq. 2.36 to zero. Finite barrier corrections,

that is correction terms of the order of 1/
(

βV ‡
)

to the rate coming from the energy exchange

with the bath are obtained when considering the energy exchange dynamics to first order inµ.16

This means that the conditional probability kernel has to satisfy three conditions. The first is

normalization
∫ ∞

−∞
dε ′P

(

ε ′|ε
)

= 1, (4.1)

the second is that it gives the correct averaged energy loss,that is:

δ (1−µ + µε) =
∫ ∞

−∞
dε ′
(

ε − ε ′
)

P
(

ε ′|ε
)

. (4.2)
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The third condition is that it obeys detailed balance. This means that if we write

P
(

ε ′|ε
)

= P0
(

ε ′|ε
)

∆P
(

ε ′,ε
)

(4.3)

the correction term∆P(ε ′,ε) must be symmetric with respect to exchange ofε ′ with ε.

The conditions given in Eqs. 4.1 and 4.2 are actually four conditions, not only two, since the

equalities must hold for any value of the energyε. As shown in previous work (in Eq. 2.46 of

Ref.17 the minus sign before the(ε − ε ′)4 term should be a plus sign ) this means that to lowest

order inµ

∆P
(

ε ′,ε
)

= 1+
µ
2

+
µδ
4

[

3− (ε − ε ′)2

δ 2

]

−µ
(ε + ε ′)
64δ 2

[

(

12+12δ +δ 2)
[

δ (2+δ )−2
(

ε − ε ′
)2
]

+
(2+δ )(ε − ε ′)4

δ

]

.

(4.4)

Some tedious integrations show that indeed this form obeys the conditions of Eqs. 4.1 and 4.2.

To derive the finite barrier corrected expression to the hopping rates one follows the same route as

described in the previous section, except that it becomes somewhat more involved.

As shown in the Appendix, the final result, using the notations

ϕ (is,k)≡ P̃0(is)
[

1− P̃2
0 (is)

]

(

cosk− 2P̃0(is)sin2k

1+ P̃2
0 (is)−2P̃0(is)cos(k)

)

(4.5)

and

Φ(δ ,k) =
δ
2π

∫ ∞

−∞
dτϕ (τ − i/2,k) (4.6)
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is

Γ j = −Γsd

π

∫ 2π

0
dkcos( jk)sin2

(

k
2

)

exp

(

1
2π

∫ ∞

−∞
dτ lnG

(

τ − i
2
,k

)

1
[

τ2+ 1
4

]

)

·exp

[

µ
(

2−δ
2

Φ(δ ,k)−
(

δ
2

+5

)

Φ2(δ ,k)

)]

. (4.7)

It is instructive to study the underdamped limit of the function Φ(δ ,k). One readily finds that

lim
δ→0

Φ(δ ,k) = −1
2
, k 6= 0. (4.8)

On the other hand,

lim
δ→0

Φ(δ ,0) = lim
δ→0

Φ(δ ,2π) =
1
2
. (4.9)

In other words in the underdamped limit, the function has a discontinuity at the edges of thek

interval. For the hopping rates, this implies that

lim
δ→0

Γ j = lim
δ→0

Γ(0)
j (δ )exp

(

−7
4

µ
)

(4.10)

whereΓ(0)
j (δ ) are the hopping rates as obtained without finite barrier corrections, that is as in Eq.

3.34.

From the definition of the diffusion coefficient (Eq. 3.30) one then finds that the finite barrier

correction for the diffusion coefficient in the underdampedlimit is:

lim
δ→0

D = D(0) exp

(

−7
4

µ
)

(4.11)

whereD(0) is the diffusion coefficient without finite barrier corrections (Eq. 3.35).
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In the overdamped limit

lim
δ→∞

Φ(δ ,k) =
δ
2π

cosk
∫ ∞

−∞
dτ exp

[

−δ
(

τ2+
1
4

)]

=

√
δ cosk

2
√

π
exp

[

−δ
4

]

→ 0 (4.12)

so that the finite barrier correction to the rates and the diffusion coefficient which comes from the

depopulation factor, goes to unity. It is in fact instructive to study this limit in some more detail.

When the energy loss is sufficiently large (δ ≫ 1) one also notes that:

1
2π

∫ ∞

−∞
dτ lnG

(

τ − i
2
,k

)

1
[

τ2 + 1
4

] = 4cos(k)
exp
(

−δ
4

)

√
πδ

+O

[

exp

(

−δ
2

)]

. (4.13)

This then implies that to leading order in exp
(

−δ
4

)

:

Γ j = −δ j,0Γsd



1−
exp
(

−δ
4

)

2
√

πδ

(

µδ (2−δ )

4
+4

)





+
(

δ j,1+δ j,−1
)

Γsd





1
2
−

exp
(

−δ
4

)

2
√

πδ

(

µδ (2−δ )

4
+4

)





+
(

δ j,2+δ j,−2
)

Γsd





exp
(

−δ
4

)

4
√

πδ

(

µδ (2−δ )

4
+4

)



 . (4.14)

implying that to this order only single and double hops contribute.

This exponential hopping limit without the finite barrier corrections has been studied in some

detail in Refs.22,23For our purposes here we note that a consequence of the assumption thatδ ≫ 4

is that if µδ 2−16> 0 thenΓ±2 is negative, which is of course an unphysical result. In thislimit

the perturbation theory inµ is no longer valid so that the negative value is not a failing of the finite

barrier correction theory. But it does point out that one must employ the finite barrier correction

with care. To compute the diffusion coefficient for any valueof the friction when including the

finite barrier correction we then employed the following strategy. On the one hand, the outgoing
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rate from the initial well -−Γ0 must equal the sum of all incoming ratesΓ j, j 6= 0. On the other

hand we set any incoming rate which is negative, equal to 0. Toassure the proper normalization

we then renormalize the rates such that (noting thatΓ j = Γ− j)

Γ̄ j = −Γ jθ
(

Γ j
) Γ0

2∑∞
j=1Γ jθ

(

Γ j
) , j 6= 0 (4.15)

whereΓ̄ j denotes the renormalized rate into the j-th well andθ (x) is the unit step function. This

assures that indeed−Γ0 = 2∑∞
j=1 Γ̄ j. The renormalized diffusion coefficient is then obtained from

the relationship

D̄ =
1
2

l2
∞

∑
j=−∞

j2Γ̄ j. (4.16)

In the numerical examples studied below we find that the renormalization is close to unity for

almost all values of the friction. Negative values are obtained only when the rates are in any case

negligibly small.

A final word of caution. In the absence of finite barrier corrections, one employs the trigono-

metric representation of the Dirac "delta" function (Eq. 3.31) to obtain a direct expression for

the diffusion coefficient (Eq. 3.33) by performing two integrations by parts. Formally, one may

suggest to use the same strategy also when including the finite barrier correction. The resulting

expression, when ignoring terms such ask ∂Φ(δ ,k)
∂k andk2 ∂ 2Φ(δ ,k)

∂k2 gives the expression:

D = D0exp

[

µ
(

2−δ
2

Φ(δ ,0)−
(

δ
2

+5

)

Φ2(δ ,0)

)]

(4.17)

whereD0 is the diffusion coefficient in the absence of finite barrier corrections as given in Eq.

3.33. However, this has two drawbacks, one is that it implicitly includes the negative rates, when

they occur. Secondly, due to the discontinuity of the function Φ(δ ,k) in the limit thatk is finite

andδ → 0 this result is no longer correct in this limit. We shall see below that Eq. 4.17 is useful

as long asδ is not too small.
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V Application to a periodic potential with Ohmic friction

V.1 Properties and integrals for Ohmic friction

For Ohmic friction (γ(t) = 2γδ (t)) the spectral density of the normal modes is:

ϒ(λ ) =
λγ

(ω‡2+λ 2)
2
+λ 2γ2

. (5.1)

We also note the following identities and notation:

λ ‡ =

√

γ2+4ω‡2− γ
2

(5.2)

λ1 =
γ +
√

γ2 +4ω‡2

2
(5.3)

µ2
γ =

λ 2
1

λ ‡2 (5.4)

whereλ ‡ andλ1 are the roots of the Kramers-Grote-Hynes equation (2.5).

Following Ref.21 we also use the notation

M4
(

µγ
)

=
∫ ∞

−∞
dλ̄

(

λ̄ 2+1
)

λ̄ 4
(

λ̄ 2+ µ2
γ

)

sinh2(λ̄π
)

=
2

5π
−

µ2
γ

3π
+

2
π

µ3
γ

(

µ2
γ −1

)

ψ ′ (µγ
)

− 2
π

µ2
γ

(

µ2
γ −1

)

− 1
π

µγ

(

µ2
γ −1

)

(5.5)

with

ψ ′ (µγ
)

=
∞

∑
n=0

1
(

µγ +n
)2 . (5.6)

In the weak damping limit

lim
µγ→1

M4
(

µγ
)

=
1

15π
, (5.7)

and conversely, in the strong damping limit

lim
µγ→∞

µ2
γ M4

(

µγ
)

=
4

35π
. (5.8)
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V.2 Turnover theory for the cosine potential

We consider the periodic potential

V (q) = −V ‡

2
cos

(

2πq
l

)

(5.9)

such thatV ‡ is the barrier height for escape. The barrier frequency is then:

ω‡2 =
2π2V ‡

Ml2 . (5.10)

To derive an analytic expression for the energy losses, we note that the time dependence of the

trajectory moving under the influence of the periodic potential (Eq. 5.9) initiated at one barrier

(q = −l/2) att = −∞, reaching the adjacent barrier(q = l/2) at the timet = ∞ is

tan
(πqt

2l

)

= exp
(

ω‡t
)

. (5.11)

Similarly, for the effective Hamiltonian for the unstable mode motion

Hρ =
p2

ρ

2
+

V ‡

2
cos

(

2πλ ‡ρ√
Mω‡l

)

(5.12)

we have that the trajectory is

tan

(

πρt

2lρ

)

= exp
(

λ ‡t
)

(5.13)

and we used the renormalized lattice length as given in Eq. 2.19.

In the Mel’nikov Meshkov (MM) formulation13 one finds that the energy loss is

δMM = βMγ
∫ ∞

−∞
dt

(

dqt

dt

)2

= 4βV ‡ γ
ω‡ . (5.14)
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For the theory presented in this paper, we find, using Eq. 2.26that the energy loss is

δ = 2βV ‡(µγ −1
)






2µγ +

(

1−µ2
γ

) ∞

∑
k=0

1
(

µγ+1
2 + k

)2






(5.15)

and this function is a monotonically increasing function ofthe friction coefficient. In the small

friction limit this energy loss is identical to the MM estimate:

lim
γ→0

δ = 4βV ‡ γ
ω‡ = δMM (5.16)

In the large friction limit:

lim
γ→∞

δ =
16
3

βV ‡. (5.17)

This is not identical to the MM result, which diverges.

V.3 Finite barrier corrections for the cosine potential

V.3.1 Corrections due to the energy exchange process

The main effort goes into estimation of the expansion parameter µ (Eq. 2.36). The symmetry of

motion here is different than in the cubic potential, the zero-th order motion along the unstable

mode is antisymmetric in time. Using the notation of Eq. 2.35we note that for the periodic cosine

potential:

X (t) =
π2

4ω‡2Ml2λ ‡

[

sinh
(

2λ ‡t
)

+2λ ‡t
]

. (5.18)

After some lengthy algebra we then find that (see Eq. 2.34)

βDE2 = 4µγ
(

µγ −1
)



µγ ψ ′
(

µγ +1

2

)

−1−

(

1−µ2
γ

)

4
ψ ′′ (µγ

)



 . (5.19)
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The limits are then

lim
γ→0

βDE2 =
4γ
ω‡

(

π2

6
−1

)

(5.20)

and

lim
γ→∞

βDE2 =
16
3

. (5.21)

These results are roughly half the results that one finds for the cubic oscillator, and this makes

sense, since here we have only half a period, in the sense thatthe particle traverses over the well

only once rather than twice as in the cubic case. Furthermore

lim
γ→0

µ = lim
γ→0

βDE2

δ
=

1
βV0

(

π2

6
−1

)

≃ 0.64
βV ‡ (5.22)

so that the finite barrier correction to the diffusion coefficient in the underdamped limit is exp
(

−7
4µ
)

≃

exp
(

− 7
6βV ‡

)

.

V.3.2 Finite barrier correction in the spatial diffusion li mit

The potential is separated into a parabolic part and a nonlinear correction as in Eq. 2.3. Following

Ref.,15 due to the symmetry of the potential about the bottom of the well, for the lowest order

correction, one only needs to average over the symmetric part, as follows:

〈V1s〉 =

√

β χ2ω‡2Ω2

2π

∫ ∞

−∞
dxexp(−βω‡2χ2x2)V1(x)

= −V ‡

2

{

1−exp

[

− 1
βV ‡χ

]

− 1
βV ‡χ

}

(5.23)

and the nonlinearity parameter for Ohmic friction is:

χ =
λ1+λ ‡

λ1−λ ‡ =

√

4ω‡2
+ γ2

γ
. (5.24)
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The spatial diffusion FBC is then to leading order:

κFB = 1−β 〈V1s〉 ≃ 1− 1
4βV ‡χ2 +O

(

1

β 2V ‡2

)

. (5.25)

V.4 Numerical results

For the model computations presented below, we chosel = 1,V ‡ = 1,M = 1 so that the barrier

frequency is (cf. Eq. 5.10)ω‡ =
√

2π2 ∼ 4.4429. The numerical calculations described here use a

high quality random number generator,24 having a period of 3.138×1057, as described in Ref.17

One initiates trajectories trapped in an initial well with aBoltzmann distribution

P(p,q;β ) = exp

[

−β
(

p2

2M
+V (q)Π(q/l)

)]

(5.26)

whereV (q) is given in Eq. 5.9,Π(x) is the rectangular function, i.e. 1 for|x| ≤ 1/2 and 0 oth-

erwise, andl is the lattice length. The initial momentump is thus a Gaussian random variable

with 0 average andM/β variance. The initial coordinateq is determined through the same 2 step

rejection procedure, described in,17 adapted for the periodic potential.

Trajectories are propagated using a 4th order Runge-Kutta algorithm, with a time step of150
2π
ω‡ .

The random force is taken into account using the procedure explained in.25 Trajectories are prop-

agated for a time that is sufficiently long such that one observes diffusional motion, that is〈q2〉

becomes a linear function of time. In practice, this meant that they were propagated for a time

which was at least 10/ΓTST (with ΓT ST defined in Eq. (3.7)).

The diffusion coefficient is determined by averaging over 500,000 trajectories. The last third of

the time interval, is fit by minimizing the least square distance of the data from a linear dependence

on time. The slope of this line, divided by 2 is the numerical result for the diffusion coefficient.

In Figure 1 we first plot the dependence of the finite barrier correction expansion parameterµ

defined in Eq. (2.33) on the reduced friction coefficientγ/ω‡. Sinceµ scales as 1/(βV ‡)), the

figure displaysβV ‡µ or equivalently it showsµ for βV ‡ = 1 . The condition for validity of the

26



0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10
-4

10
-3

10
-2

10
-1

10
0

10
1

βV
#
µ

γ/ω#

Figure 1: The dependence of the finite barrier correction expansion parameterµ on the reduced
friction coefficientγ/ω‡. For further details see the text.

finite barrier correction to the diffusion coefficient is that µ ≪ 1. This condition is not met, for low

reduced barriers.

Numerical results are provided in Table 1. The accuracy of the numerical results is a function

of both the (reduced) barrier height and the magnitude of the(reduced) friction coefficient. The

more rare the event, the larger is the sample needed. For the results presented in the Table the

typical accuracy forβV ‡ = 8 is a few ppms forγ/ω‡ >5.6e-3 but this degrades to several tens of

ppm for lower friction. ForβV ‡ = 5 the accuracy is∼ 10 ppm forγ/ω‡ >5.6e-3 and it degrades to

several tens of ppm up to 100 ppm for lower friction. The typical accuracy forβV ‡ = 2 is several

tens of ppm forγ/ω‡ >5.6e-3 and it degrades to several hundreds of ppm for lower values. For

this low gap size, we didn’t go belowγ/ω‡ =3.16e-3, as the accuracy would further degrade to
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several thousands of ppm.

Table 1: Numerical results for the diffusion coefficient forthe periodic potential defined in Eq. 5.9,
for three reduced gap sizesβV ‡ = 2,5,8. The dimensions are determined by the specific choice of
the parameters used, that isM = 1, l = 1,V ‡ = 1.

γ/ω‡ βV ‡ = 2 βV ‡ = 5 βV ‡ = 8 γ/ω‡ βV ‡ = 2 βV ‡ = 5 βV ‡ = 8
0.001 0.40241 0.013297 0.13335 0.20100 0.0066898 2.8135e-04
0.001333 0.29606 0.010768 0.17783 0.16384 0.0057339 2.4904e-04
0.001778 0.23261 0.0080552 0.23713 0.13490 0.0049773 2.2390e-04
0.002371 0.17127 0.0060088 0.31623 0.11161 0.0043764 2.0505e-04
0.003162 4.1367 0.13647 0.0046123 0.42169 0.093474 0.0038979 1.8837e-04
0.004216 3.4371 0.10222 0.0036115 0.56234 0.078326 0.0034983 1.7348e-04
0.005623 2.7983 0.078927 0.0027971 0.74989 0.065765 0.0031218 1.5835e-04
0.007498 2.2317 0.061136 0.0021455 1.0 0.054527 0.0027418 1.3980e-04
0.01 1.7556 0.046946 0.0016649 1.33352 0.044333 0.0023430 1.2041e-04
0.013335 1.3449 0.036913 0.0013339 1.7783 0.035368 0.0019483 1.0047e-04
0.017783 1.0346 0.028818 0.0010550 2.37137 0.027683 0.0015657 8.1308e-05
0.023714 0.81920 0.022661 8.4046e-04 3.1623 0.021368 0.0012313 6.4423e-05
0.031623 0.63062 0.018198 6.7706e-04 4.21696 0.016267 9.5327e-04 5.0003e-05
0.042170 0.49536 0.014553 5.5091e-04 5.0 0.013814 8.0492e-04 4.2584e-05
0.056234 0.38944 0.011730 4.5442e-04 6.0 0.011580 6.8036e-04 3.5861e-05
0.074989 0.31209 0.0096163 3.8123e-04 7.0 0.009964 5.8544e-04 3.0863e-05
0.1 0.24938 0.0079304 3.2522e-04 8.0 0.008748 5.1270e-04 2.7088e-05

The numerical results are compared with the theoretical results in Figs. 2-4 where we show

the diffusion coefficient as a function of the reduced friction for the reduced barrier heights of

βV ‡ = 2, 5 and 8 respectively. In each Figure we plot the numerically exact diffusion coefficient,

the diffusion coefficient without any finite barrier correction (FBC), as obtained from Eq. (3.35)

with κFB = 1, and the diffusion coefficient obtained by including both the energy and spatial

diffusion finite barrier corrections as obtained from Eq. (4.16) andκFB from Eq. (5.25). In each

Figure, the left panel shows the diffusion coefficients and the right panel the error of the analytic

diffusion coefficients relative to the numerically exact result defined as:

∆κ =
κi −κN

κN
(5.27)

whereκi, is the analytic estimate obtained without or with the FBC, while κN is the numerically
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exact result.
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Figure 2: Diffusion coefficients for the reduced gapβV ‡ = 2: The left panel compares the analytic
diffusion coefficients with and without FBC’s to the numerically exact diffusion coefficient. The
right panel shows the relative errors (see Eq. (5.27)). The units are as in Table 1.
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Figure 3: Diffusion coefficients for the reduced gapβV ‡ = 5. The notation is as in Fig. 2.

One notes that (as expected) the analytical results improvesystematically with increasing bar-

rier height. At the same time, the finite barrier correction significantly improves the accuracy of

the estimate. For the lowest barrierβV ‡ = 2 the error even with the finite barrier correction be-

comes significant, especially in the underdamped limit. Thequantitative failure in this limit was

also found when considering escape from a cubic potential, as may be seen in Fig. 5 of Ref.18
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Figure 4: Diffusion coefficients for the reduced gapβV ‡ = 8. The notation is as in Fig. 2.

However, for the cubic potential, the analytic theory underestimates the rate, while here it overes-

timates the diffusion coefficient. It is remarkable though that already for a reduced barrier height

as low asβV ‡ = 5 the error with finite barrier corrections is less than 10% for any value of the

friction coefficient.

Thus far the analytical estimate for the diffusion coefficient with finite barrier corrections was

obtained by the discrete summation as given in Eq. (4.16). One may also formally carry out the

summation analytically and use the result given in Eq. (4.17), keeping in mind that this compact

analytic result is valid provided that the reduced energy lossδ , is not too small. To obtain a better

feeling for the accuracy of the analytically summed expression (Eq. (4.17)) we compare in fig-

ure 5 between the numerically summed and renormalized form of Eq. (4.16) with the analytically

summed result (Eq. (4.17)). As may be discerned from the Figure, the results are close to each

other provided that the reduced friction coefficient is larger than∼ 0.003, for which the reduced

energy loss isδ ∼ 0.63. For smaller values of the friction coefficient the summedresult is more

accurate. For a larger reduced barrier height ofβV ‡ = 8, the lines cross atγ/ω‡ ∼ 0.002, for which

δ ∼ 0.56. We conclude, that except for the underdamped limit defined as the limit for which the

reduced energy loss is much smaller than unity, one may safely use the analytically summed result.
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Figure 5: The relative errors (∆κ) for the analytically summed diffusion coefficient (Eq. 4.17,
denoted as ’formula’) and the numerically summed form (Eq. 4.16,denoted as ’summing’) plotted
as a function of the reduced friction coefficient.

VI. Discussion

In this paper we considered the motion of a particle moving ona periodic potential influenced

by friction and Gaussian thermal noise. Two central resultsare derived. The first is a uniform

expression for the diffusion coefficient, valid for any value of the friction based on the normal

mode representation of the dynamics. This result is the periodic potential analog of the modified

PGH turnover theory for the escape rate, as presented in Ref.18

The second result is the derivation of finite barrier corrections to the diffusion coefficient for

any value of the reduced friction coefficients. Such finite barrier corrections were considered pre-

viously only for escape from a potential well, but not for diffusion on a periodic lattice. Numerical
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simulation results demonstrated than indeed the finite barrier corrections improve the accuracy of

the zero-th order results, while at the same time showing that for reduced barrier heights of the

order of 5 or greater, the theory is quantitative (with an error of at most 20%), even without the

finite barrier corrections. Even for a reduced barrier as lowas 2, we found that the turnover theory

does a reasonable job in predicting the diffusion coefficient.

The theory presented here may be expanded in a few directions. We have not considered

memory friction. In this context, as noted already in Ref.18 the present perturbation expansion

underlying the theory is not valid when the memory time becomes too long. In other words, the

turnover problem in the presence of long memory and periodicpotentials remains open. On the

other hand, one may use the formalism presented here with memory friction and the results should

be valid for not too long memory times. There is thus interestto employ the present work in this

limit and test its validity.

A second, not less interesting aspect of the theory is its extension to quantum mechanics. The

expressions presented here were derived under the assumption of incoherent tunneling between

adjacent barriers at temperatures which are above the crossover temperature between deep tunnel-

ing and thermal activation.11 As discussed in Ref.20 such a theory may lead to unexpected results,

such that the quantum diffusion coefficient becomes smallerthan the classical due to above barrier

quantum reflection. This warrants the further study of the theory presented here, in the semiclassi-

cal limit.

A third aspect is dimensionality. The theory presented herewas limited to one dimensional

diffusion. As already noted in the Introduction, such one dimensional diffusion has been ob-

served experimentally.2,3 However, the challenge of deriving a multidimensional theory of surface

diffusion remains open22 especially since in most cases, surface diffusion is not limited to one

dimensional channels.

The results presented in this paper, together with previousresults for the rate of escape from

a potential well18 suggest that the linear response theory which lies at the heart of the turnover

theory11 is valid, even when the barrier height for escape is of the order of the thermal energy,
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provided that one accounts for anharmonicity in the potential. This has implications for recent

measurements on the transit time distribution between folded and unfolded states of proteins and

nucleic acids and the residence time in each of the two states.26 In these experiments, the proteins

are stretched using optical tweezers such that the equilibrium populations of the folded and un-

folded states are approximately equal. The transit time distribution between the two states is then

measured and fit to a theoretical distribution based only on assuming a parabolic barrier whose

height is large compared to the thermal energy.27,28 The resulting fits are inconsistent since they

imply much too low barriers ( a fraction of the thermal energy). The present theory suggests that

here too, finite barrier corrections and the methodology presented in this paper could go a long

way in resolving the discrepancy.

Finally we note that the formalism used here is applicable tomany additional phenomena of

interest, whose underlying dynamics is described by a master equation who’s structure is similar to

that of Eq. 3.1. These include29 the theory of sticking and desorption from surfaces, ionic hopping

in solids, cascade capture of electrons in semiconductors and Josephson systems.
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APPENDIX A: Derivation of the finite barrier correction to th e

hopping rates

The purpose of this Appendix is to provide some detail on the derivation of the expression for the

finite barrier corrected hopping rates, given in Eq. 4.7. From Eqs. 3.11,4.3 and 4.4 we note that

P̃(is,ε) = P̃0(is) [1+ µν1 (s)−µεν2 (s)] (A.1)
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with

ν1(s) =
δ s2

4
δ (δ +2)(2s+1)(s+1)2 +2δ s2(s+1)−δ s (A.2)

and

ν2(s) = δ s(s+1)

[

δ +2
2

s(s+1)−1

]

. (A.3)

Anticipating the usual choice of contour, we also note that:

ν1

(

−iτ − 1
2

)

= δ

[

2iτ3+
3
2

iτ − iτδ (δ +2)
(

τ2+ 1
4

)2

2
+

(

τ2+
1
4

)

+
1
2

]

(A.4)

ν2

(

−iτ − 1
2

)

= δ
(

τ2+
1
4

)[(

τ2 +
1
4

)(

δ
2

+1

)

+1

]

. (A.5)

The integral equation for the steady state fluxes, as given inEq. 3.1 continues to be valid,

except that one must use the full conditional probabilityP(ε ′|ε) instead of the zero-th order (inµ)

probabilityP0(ε ′|ε). Noting that:

∫ ∞

−∞
dε exp(−sε)N (ε,k)ε = −∂ Ñ (is,k)

∂ s
(A.6)

one finds after some algebra that the integral equation to leading order inµ becomes:

Ñ (is,k)+ Ñ [i(s−a) ,k] = P̃0(is)exp(ik)

(

Ñ (is,−k) [1+ µν1(s)]+
∂ Ñ (is,−k)

∂ s
µν2(s)

)

+P̃0(is)exp(ik)

(

Ñ (i(s−a) ,k) [1+ µν1 (s)]+
∂ Ñ (i(s−a) ,k)

∂ s
µν2 (s)

)

. (A.7)

Using the symmetry relations given in Eqs. 3.14 and 3.15, noting that the same relations hold also

for ∂ Ñ(is,−k)
∂ s and thatP̃0(is) ,ν1(s) andν2(s) are real allows us to replace the single equation A.7

with two equations for the real and imaginary parts.

Defining the operator

Ô(is,k) =

(

1−µ
P̃0(is)cosk

[

1− P̃0(is)cosk
]

[

ν1(s)+ν2(s)
∂
∂ s

]

)

(A.8)
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and noting that to leading order inµ

Ô−1(is,k) ≃ 2− Ô(is,k) (A.9)

allows us to derive an equation for the imaginary part

ImÑ (is,k)+ ImÑ [i(s−a) ,k] =
P̃0(is)cosk− P̃2

0 (is)
[

1− P̃0(is)cosk
]

[

ImÑ (i(s−a) ,k)− ImÑ (is,k)
]

− tan2k

[

[

1− Ô(is,k)
] 1
[

1− P̃0(is)cosk
]

]

[

ImÑ (i(s−a) ,k)− ImÑ (is,k)
]

+

(

[

1− P̃0(is)cosk
]

cos2 k

[

1− Ô(is,k)
]

)

[

ImÑ (i(s−a) ,k)− ImÑ (is,k)
]

(A.10)

Using the ansatz as given in Eq. 3.23 withÑ2(is,k) given in Eq. 3.21, noting that

∂ ln Ñ2(is,k)
∂ s

= −π
a

cot

[

π (s+1)

a

]

=
∂
∂ s

ln Ñ2(i(s−a) ,k) , (A.11)

using the notation as in Eq. 4.5, keeping only up to linear terms in µ leads to the intermediate

result:

Ñ1(i(s−a) ,k) = G(is,k)Ñ1(is,k)

+µ
[

1− P̃2
0 (is)

]

ϕ (is,k)
[

1− P̃0(is)cosk
]

[

ν1(s)+ν2(s)

(

−π
a

cot

[

π (s+1)

a

]

+
∂
∂ s

)]

[

Ñ1(is,k)+ Ñ1(i(s−a) ,k)
]

−µ sin2 k
G(is,k) P̃2

0 (is)
[

1− P̃2
0 (is)

]

δ (2s+1)ν2(s)
[

1− P̃0(is)cosk
]2

[

Ñ1(is,k)+ Ñ1(i(s−a) ,k)
]

. (A.12)

We then use the notation as given in Eq. 3.25 expanding however with respect toµ

g̃(is,k) = g̃0(is,k)+ µ g̃1(is,k) (A.13)

such that ˜g0(is,k) is the solution in the absence of finite barrier corrections,that is, it is the solution
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of Eq. 3.26 and has the property that

g̃0(i(s−a) ,k) = g̃0(is,k) . (A.14)

To first order inµ we then have that:

∂
∂ s

[

Ñ1(is,k)+ Ñ1(i(s−a) ,k)
]

≃
[

∂ g̃0(is,k)
∂ s

]

[

Ñ1(is,k)+ Ñ1(i(s−a) ,k)
]

. (A.15)

Inserting all these results into Eq. A.12 and rearranging leads to:

Ñ1(i(s−a) ,k)

Ñ1(is,k)
= G(is,k)

(

1+2µϕ (is,k)

[

ν1(s)+ν2(s)

(

−π
a

cot

[

π (s+1)

a

]

+
∂ g̃0(is,k)

∂ s

)])

+µν2 (s)
G(is,k)δ (2s+1)
[

1− P̃0(is)cosk
]

(

ϕ (is,k)− P̃0(is)cosk
[

1− P̃2
0 (is)

]

)

(A.16)

and this gives the desired analog of Eq. 3.26

µ g̃1 (i(s−a) ,k)−µ g̃1 (is,k) = 2µϕ (is,k)

[

ν1(s)+ν2(s)

(

−π
a

cot

[

π (s+1)

a

]

+
∂ g̃0(is,k)

∂ s

)]

+µν2 (s)
G(is,k)δ (2s+1)
[

1− P̃0(is)cosk
]

(

ϕ (is,k)− P̃0(is)cosk
[

1− P̃2
0 (is)

]

)

≡ L(is,k) (A.17)

whose solution is known:21

µ g̃1 (is,k) =
1

2ia

∫ z+i∞

z−i∞
dyL(iy,k)

[

cot

(

π (s− y)
a

)

+cot

(

π (y+1)

a

)]

. (A.18)

The remaining task is then to insert the explicit result forL(iy,k) and change the contour to

z = −1/2 andiy = τ − i/2 and take the classical limit thata → ∞. One finds

lim
a→∞

g̃1(−ia,k) =
2−δ

2
Φ(δ ,k)−

(

δ
2

+5

)

Φ2(δ ,k) (A.19)

36



with Φ(δ ,k) defined as in Eq. 4.6. This then implies that the finite barriercorrected expression for

the hopping rates is as given in Eq. 4.7.
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