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Abstract

Kramers’ turnover theory, based on the dynamics of the ciblie unstable normal mode
(also known as PGH theory) is extended to motion of a partiol@ periodic potential inter-
acting bilinearly with a dissipative harmonic bath. Thisaghieved by considering the small
parameter of the problem to be the deviation of the collediisth mode from its value along
the reaction coordinate, defined by the unstable normal mééi# this change, the effective
potential along the unstable normal mode remains periadli@it with a renormalized mass,
or equivalently a renormalized lattice length. Using setorder classical perturbation theory
this not only enables the derivation of the hopping ratesthadliffusion coefficient, but also
the derivation of finite barrier corrections to the theorizeTanalytical results are tested against
numerical simulation data for a simple cosine potentialn@tiriction, and different reduced

barrier heights.
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The classical theory of surface diffusion on a periodic po&é is well understood. For a particle
whose motion is governed by a generalized Langevin equatidhe limit of weak damping, the
diffusion coefficient diverges as/ ¥ wherey is the friction coefficient. The divergence is a result
of the fact that when the friction is weak, the rate of escdpleparticle from a given well goes
asy! but the mean squared path length goeg&s An escaping particle will cross many barriers
before being retrapped in a well, since its motion is alm@dlidtic. Conversely, in the strong
friction limit, the rate of escape of the particle goes ag dnd the mean squared path length is that
of a single jump, since in the strong damping limit, an esogparticle is immediately retrapped
in the adjacent well. The diffusion coefficient is thus a mmmacally decreasing function of the
friction strength.

Multiple hops in surface diffusion have been observed arpartally>* and numerically
The challenge of deriving an expression valid for any fantstrength was met by Mel’nikéwho
showed how, with the use of a master equation, a Gaussiaalphiyp kernel for the exchange of
energy of the particle with the bath and the Wiener Hopf métbne may derive explicit ex-
pressions for the hopping probabilities and the diffusioefticient when the escape is dominated
by the energy exchange of the particle with the bath. In theerate to strong damping limit,
where energy exchange is rapid and spatial diffusion setseimultiplied the expression for the
diffusion coefficient with the Kramers-Grote-Hynes splatidfusion factor'19 for the rate. The
resulting theory was tested against numerical simulatidRef2

A related problem is known as Kramers’ turnover thebry?Kramers derived expressions for
the escape rate in the energy and spatial diffusion limits not for the whole range of friction
strengths. This problem was solved in two steps. Mel’'niknd Meshkov (MM)'3 solved the
problem for the energy diffusion limit, Pollak, Grabert aRénggi (PGH}* solved it for the
whole range of friction. The PGH method employed a Hamilonformalism and considered
the dynamics along the unstable collective mode, definedhéyynamics in the vicinity of the
parabolic barrier. Mel'nikov extended his approach to @dic potentials’ The original PGH

formalism was not well suited to this problem, since theafte potential for the motion along



the unstable mode was not periodic. The first challenge degtin this paper is the extension of
the PGH method to periodic potentials, that is to surfadeisiidn.

A second challenge is to derive finite barrier correctiomsie diffusion. Pollak and Talkné?
derived the leading order correction term to the Kramerst&Hynes expression for the rate in
the spatial diffusion limited regime, which gives correa of the order oksT /V* (T is the
temperatureY* is the barrier height). Mel'nikotf then derived finite barrier corrections for the
energy diffusion limited regime. These were extended taRG&1 formalism only recently, both
in its old form!” as well as in its more modern formulatidf However, to date, neither MM nor
PGH have derived finite barrier corrections for the enerdfysion limited regime of motion on a
periodic potential. This is the second challenge addressenis paper.

In Section Il we review the classical perturbation theoryalihunderlies our revised PGH the-
ory, as described in Réf Then in Section Ill we apply the formalism to the problem dfuion
on a periodic potential, deriving explicit formulae for thepping distribution and the diffusion
coefficient. In Section IV we introduce finite barrier cotiens and derive them for the hopping
distribution and thus also for the diffusion coefficient. eTénalytic results of Section Il and 1V
are then tested against numerical simulation data in Sestid he paper ends with a Discussion

of the results and further extensions.

ll. Perturbation theory for surface diffusion

I1.1 Preliminaries

The classical dynamics of the generic system is that of agiamith massM and coordinate

whose classical equation of motion is a Generalized Lamgéguation (GLE) of the form:

t
Mq+d\;—$)+m/o dt'y (t—t')§(t) =F(t). 2.1)



F (t) is a Gaussian random force with zero mean and correlatiartim
(F()F (') =MkgTy(t—t). (2.2)

y(t) is the friction functionkg is Boltzmann’s constant arl is the temperature. The potential is
assumed to be periodic, with a wellgt= 0+nl, n=0,£1,4+2 ... andl is the distance between
subsequent wells (lattice length). The wells are separayebarriers, located af = g* + nl,
n=0,+1,+2,... The barrier heights aré*. The wells are characterized with the harmonic
frequencyw, and the barriers with parabolic barrier (imaginary) fregmecw®. Without loss of

generality, the potential may be written as

V(@) =~ 3MeP¢ + Vi () 23)

andV; (q) is termed the nonlinear part of the potential function.

When one ignores the nonlinear part of the potential thdtragiHamiltonian has a quadratic
form and may be diagonalizéd.We denote the (unstable) mass weighted normal mode and mo-
mentum agp andp, respectively and the stable bath normal mode coordinattsnamenta ay;
andpy, respectively. The full Hamiltonian may then be expressed as

Pl

1 N
H A*202 4V () + = 2 A2 (2.4)
2 2 2;['0% i)

whereA; denoted the frequency of the j-th normal moaé. denotes the unstable normal mode

barrier frequency and it may be obtained through the KrarGewte-Hynes relatiort:1©
/\¢2+9<A¢)/\¢:w¢2 (2.5)

wherey (s) stands for the Laplace transform of the time dependentdriciThe system coordinate



gis expressed in terms of the normal modes as

VM@ = Uggp + U1 0 (2.6)
with
N
o = Ujoyj (2.7)
=1
and
2 2 k 2
U]_:l—UOO: Z Ujo (28)

The nonlinear part of the potentid] (q) couples the motion of the unstable normal mode to
that of the stable normal modes. The matrix elemg#ts the projection of the system coordinate
on the j-th normal mode. The projection of the system coatdiron the unstable modsgg is

given by the relation?

170 op(9 -
1+é< A¢ + 05 |$)\i . (29)

The normal mode "friction kernel" is defined as:

K(t—t) % Aj(t=t))]. (2.10)

Using properties of the normal mode transformation (seexample Eq. 2.17 of Ref?) one may
readily express the Laplace transform of the kernel as

s, s+y(s)

m$:(ﬂ%§—ﬂ%*wﬂ@ﬁ—§—waa) @11)

so that it is known in the continuum limit. The spectral dgnef the stable modes is defined as:

u2

Y()\):g )\_[5()‘ Aj) = 8(A+A))] (2.12)
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so that:
ARe[y(iA)]
(W24 A2)2 L A2 (IA) §(—iA)

Y(A) =ARe[K(iA)] = (2.13)

[1.2 The zero-th order motion

When the damping is weak, one may assume that the projedtibe system coordinate onto the

stable normal modes is small so that the paramet€Eq. 2.8) may be considered as the small
parameter for the dynamics. However, if, as in PGH theorg oaively considers the zero-th

order motion as being determined by setting= 0 in the Hamiltonian, then the potential for the

motion along the unstable mod%)\ 252 1V (Uuggp) is no longer periodic and the perturbation
theory will fail as one moves away from the primary well. Teeosome this difficulty, following

the derivation in Ref8 we rewrite the Hamiltonian as:

1 4 2 Lo 187, 05

+50" (Uoop +110)* ~ 21 +§j;[pyj +Ajyﬂ . (2.14)

We then defineg™ (p) by demanding that
w*? (Ugop + u10*)? = A ¥2p2. (2.15)

and redefine the coordinateby using the notation

o =uo*+uAo (2.16)

so that the "small" deviation fromy o™ is:
uAo =u o+ (uoo— z)—i) p. (2.17)



The full Hamiltonian may now be rewritten as:

o5 1 (A 13715 o
H = 7+V {W(ﬁp+ulAa)]+égl[pyj+/\jylz}
+w A TpuAo + %wizquaz (2.18)

andu,Ac is readily identified as the "small parameter” of the probl&etting it equal to zero now
implies that the potential along the unstable normal modé Qs\/—lm i‘o—ip) and this zero-th order

potential is periodic, albeit with a renormalized lattieadth

l,

For a parabolic barrier potential one readily finds that:

1 [/A* 4o 1 4000 2 1o o
Vb [W <Ep+u1Aa)}+w)\ pulAa+§w utAoc __5)\ 6]

(2.20)

in other words, for a parabolic barrier we regain the sepam@dmamics of the normal modes. Any
coupling between the unstable mode and the stable modessaeitg comes from the nonlinear
part of the potential.

The zero-th order dynamics of the unstable normal mode hette determined by the zero-th

order unstable mode Hamiltonian

P3 ( Af )
Hp = 24V (—2—
P 2 \/Mwip
OB 1, A
= 7—5)\ p+Vi Nw*p . (2.21)

Close to any barrier top, the zero-th order barrier remdiessame as before, it is quadratic in

the unstable mode coordinate. The central difference lestwieis representation and the "stan-



dard" PGH formalism is that the argument of the nonlineat pithe potential has changed from
Ugop/VM to A*p/ (Noﬁ). This means that the shape of the potential has not changgdhe

effective mass of the motion is ndWw*Z/)\ *2 > M, or in other words, friction has led to a heavier
effective mass. The zero-th order dynamics of the bath tsaha collection of uncoupled stable

harmonic oscillators.

[1.3 First order perturbation theory

To first order the Hamiltonian is expanded as:

A* A
H:Hp—|—V1’( )”1 o

1 N
N +éjzl[p§j+/\,?y,2] (2.22)

where the prime denotes differentiation with respect toatggiment. The first order equation of

motion for thej-th bath oscillator is:

T 2., Ujo Ai
i = AP v (o). 229

This is a forced oscillator equation of motion which is rédblved

Ujo /t ,sin[Aj(t—t')] ,( AF )
L= Y dt V. / . 2.24
th-,l /_M o AJ 1 /M_wipt ,0 ( )

Using the notatiorB = 1/ (kgT), following the PGH methodology, the (reduced) energy gaine
by the bath as the unstable mode traverses from one bargetloywell to the adjacent barrier is

given by:

:E ) /°° ny! /\ipt,O 02K(t_t/)/ Aipt’,o
0=om |4/, dVi VMot v VMw* | (2.23)

This may then be recast in the more convenient form:

t 2
A"Pro )‘ . (2.26)

A " stexpl A0V
5_m/wd/\)\Y()\)‘/mdteXp(_'/\t)Vl(\/mw¢



I1.4 Second order perturbation theory

In anticipation of the derivation in the next section of fanldarrier corrections to the hopping rates
and the diffusion coefficient, it is necessary to considerdiange in time up to second ordeuin
of the bath energy defined as: N

Egt = %,Zl B2+ AR (2.27)

The exact equation of motion for the j-th bath stable moddlatar is:

d2y. 1 /AF Ui
so that to second order:
dzyh 2 2 < AF ) Uig AF 1
“ A2y, \ J < +——_uAG ) . 2.29
dt2 jy]t,z 1 Nw¢Q \/M \/Mwip[,l \/M 180t 0 ( )

This is again a forced oscillator equation of motion, whglhdgadily solved, provided that the first
order correction to the unstable mode motioyy, is known.

The exact equation of motion for the unstable mode is:

d? u 1 /A*
d—tgt :A*Zp[—\/—%vl’ (\/—M (ﬁpmtulAat)) (2.30)

so that the first order equation is:

dzpl,l 12 Uoo, , 1 A¢ A*
i = A pt,l_ﬁvl (\/—MEQ’O) (ﬁpt,l—f-UlAUt,O)-

(2.31)

This parametric forced oscillator equation of motion maysbked using energy conserving per-



turbation theory:® One readily finds that:

t d (A
Pr1= _ppt’o/oodt / dt” U]_O'tuo dt// 1 \/_ ip[”O

p/ 0
(2.32)

and we ignored a term which is of orde, — ¢ since this is second order .
As described in Refl/ it is then a matter of some algebra to show that to second dheer
average energy lost by the system as it traverses from orahl@snode barrier to the next is a

sum of two terms:

B(Es)e —B(EB) «=0—-PBDE2=0(1—p) (2.33)

and this defines the expansion paramegtér be used below. The first terdnis the average energy
lost to the bath af =0 and is givenin Eqgs. 2.25 and 2.26. The temperature depecaigtnibution
which expresses the fact that the thermal bath will transfiergy to the system is readily found to

be:

—)\i / ¥
poer=— [ dtdvl/(Nw*pt) d - /t K- M (JarPr-o)
M

dt =R ot d”
- /d)\Y </ X (t Cos[)\t]{d (\/_wiptﬂ)
( / _dt”sin[At"] [%vl’ (%QO)}) (2.34)

where the last two lines are a more convenient form for coatprial purposes, since one integra-

tion has been carried out. Here, we used the notation

X(t)= [t = X (1), (2.35)
ppt/ 0

A second aspect is that in principle the energy loss derives far is only at the barrier energy.

In principle though the energy loss is energy dependent.has/s in Refl’ this implies that to

10



second order in the coupling between the system and the bdtto dowest order in the expansion

in energy € = BE), the average energy loss is
B(AE) =06(1—pu—+ ue). (2.36)

This relation lies at the heart of the finite barrier correasi to the hopping rates and the diffusion

coefficient.

lll. Turnover theory for surface diffusion

The j-th well is bounded by two barriers, one from the left and ttieeofrom the right.ffr (g) de-
notes the flux of particles at reduced enegg@pproaching the right barrier of theth well moving
from left to right Whilefj* (&) denotes the flux of particles approaching the left barrighefj-th
well, moving from right to left. Following the derivation dflelnikov® and as also described in
Ref.?0 one has that at steady state, the ffl]-]LX(E) is the sum of the fluxf; (¢’) reflected from the
barrier with reflection probabilitiR(¢’) returning to the right barrier with energyand the flux of
particles coming from the adjacent well, approachingjthel barrier and transmitted through it
with transmission probability (¢’) then reaching the right barrier with energyThe steady state

equation is thus

i (e)= [ deP(ele) [ ()R(E) + ()T ()] (3.1)

whereP (g|€’) is the conditional probability that a particle initiated sty the left barrier with
energye’ will arrive at the adjacent barrier with energy Within the turnover formalism, the

kernel is the Gaussian

Po(gle’) =

/ 2

40

1
VAT
where the zero subscript is used to denote that this kermpdiaathat the average energy lost upon

one traversal from left to right (or equally from right totleis 4. It does not include in it effects

11



such as the energy and temperature dependence of the aeaegg loss, used below to derive
finite barrier corrections to the turnover theory. Impotignt obeys detailed balance.
The reflection and transmission coefficients are the quaptnabolic barrier estimates

B 1 T () = exp(ag) 2
~ 1l+exp(ag)’ " l+exp(ag)’”  hBAF

R(g) (3.3)

In this paper we consider exclusively the classical dynarsdcthat at the end of the derivation we
take the limit thath — 0O, or equivalentlya — oo,
The boundary conditions on the fluxes are that initially thetiple is located in thg = 0 well
with a thermal distribution so that
fi

(€)e o = B0, OXP(6) (3.

wheredjo is the Kronecker "delta” function. In the spatial diffusibmited regime, only nearest
neighbor hops are allowed. The coefficiénit chosen so that in this limit, the rate of escape from
the initial well is just twice the spatial diffusion ratE4j) for escape over one of the two adjacent

barriers. Or more formally

C= Fsdsin<g> i—n (3.5)

The spatial diffusion escape rate is

AF
Msd = I_TSTEKFB. (3.6)

wherel 17 is the escape rate estimate without taking frictional éff@tto account, that is

2exp(—pV?)
(2iMB)*2 /=, dgexp(—BV () 8 (a+ ) 8 (5 —q)

s = (3.7)

where the factor of two in the numerator comes from the feat tte particle can escape from the

well in either direction. We assumed that the initial weltloé periodic surface is locatedat= 0.

12



Keg IS the finite barrier correction to the rate in the spatiafudifon limited regime, as given in
Ref.1®

From the symmetry of the periodic potential we note that

fir(e) =7 (e). (3.8)

The rate of trapping in the j-th well is by definition:
r :/_oodeT (€) {fjtl(s)+ () -1 (e) - (e)]. (3.9)

The turnover theory for surface diffusion is then aimed atvileg an explicit expression for the
rateslj for any value of the friction.

For this purpose one defines the discrete Fourier transform

N (¢,k) = R(e) % exp{i (j+%) k] f (e). (3.10)

j:—oo

The double sided Laplace transform is defined as

g(is) = /0:0 deexp(—es)g(e). (3.11)

Using the fact thaB, (¢]€’) = Py(€ — €’) we use the definition of the discrete Fourier transform

and the integral equation 3.1 to find that
N (is,k) +N[i (s—a),K = exp(ik) Py (is) (N[i (s—a) K + N(is,—k)) . (3.12)

We then note that
Py (is) = exp[d (S +9)] (3.13)

13



is real and

Re[N (is,—k)] = Re[N (is k)] (3.14)

while

Im[N (is,—k)] = —Im[N (is,k)] . (3.15)
Separating the real and imaginary parts in Eq. 3.12 andameging leads to the relatively simple
result (Eqg. 2.13 of Ref9):

ImN [i (s—a) ,k] = —G(is, k) ImN (is k) (3.16)

with
1-P2(is)
1+ P2(is) — 2Py (is) cos(k)

G(is k) = (3.17)

Solution of the integral equation 3.16 will then lead to tlesided hopping rates. To see this,

we use the Fourier representation of the Kronecker deltetiom

1 2ndk i(l—jk
8. =5, ), dkexpli(l—]K (3.18)
to note that:
— dkexp( —i |1+ 5 |k N(—la,k):/ deT (&) f" (g). (3.19)
27T 0 2 —00
From EqQ. 3.9 one then finds that:
2 (em k ~
M= - dkcos(jk)sin(é) Im[N (—iak)]. (3.20)
0

It remains then to solve the integral equation 3.16, thilovad the same steps as in the Ap-

14



pendix of Ref?! Using the notation

No (is,k) = ZS;T,%%FS" Sin(;)
a

implies that

Ny [i (s—a),k] = —No (is,k).

This is then rewritten as:

ImN (is, k) = Ny (is,k) N2 (is, k)

so that the integral equation takes the form:

Ny [i (s—a),k] = G(is, k) Ny (is,k).

Defining
g(is,k) = InNy (is, k)

we then have that:

gli(s—a),k—g(is,k) =InG(isk).

This equation is then readily solved (see the Appendix of Ref

(is,k) = %ia /HmdylnG (iy, k) {cot(@) +cot<w)} .

Choosingz = —1/2 and shifting the contour such thigt= 1 —i/2 gives

sinZ

—ia,k) = / drInG< k) [cosh(Z%)a—cosg}‘

15
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(3.24)
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(3.26)

(3.27)

(3.28)



From Eq. 3.20 one then obtains the central result:

Ty o (K 1/ i sinZ
Mi=—= J; dk(:os(jk)sm2 (é) exp(a/wdrlnG(r—é,k> [cosh(2%)—cos§]>

(3.29)
and this is precisely Eq. 2.15 of Réf.
The diffusion coefficient is given in terms of the partialass:
D— 12 S i’ (3.30)
=3 j_z_mj j- .
Noting the discrete Fourier representation of the Diradtaddéunction
i 0 (k+2mm) = i z exp(ijk) = i z cos(jk) (3.31)
m=—o0 .
So that:
> . ®  d?6(k+2mm
Y j?cos(jk)=-2m Y % (3.32)
j=—0 m=—oo
one derives the explicit expression for the diffusion coedfit:
1 1 (@ 1+P (1 4) sinZ
D = ~Tgl2ex —/ drin |22 a 3.33
2 o p(a —0 —PR(1—1) | [cosh(2ZX) — cosZ] (3-33)

and this is formally the same as Eq. 2.16 of Ref.

All the expressions derived thus far are valid in a semiatasBmit, in which the temperature is
above the crossover temperature between deep tunnelintpemdal activation:! Their classical
limit, which is of interest in this paper, is obtained by iletta — . This implies that the hopping

rates are:

r,—>——/ dkcos( jk)SII‘lZ( )exp(%_[/idrlnG(T—ié,k) [rzi }> (3.34)

1
7

16



and the diffusion coefficient is:

D— = rsdlzexp< /drl

The difference between these results and those of RefefC is in the evaluation of the energy

1+Po(
1-R(1-

)
)

1
T ) . (3.35)

I\JI NI

loss. In contrast to the MM energy loSswhich diverges linearly with the friction, or the "stan-
dard" PGH energy losé which is not monotonic with the increase of friction, in tregent theory
the energy loss is given in Eqs. 2.25 and 2.26. This expneggui@s an energy loss which in-
creases monotonically with the friction, reaching a comsia the high friction limit. It is also

valid for memory friction provided that the memory time doed become too long.

IV. Finite barrier corrections to the turnover theory for su rface
diffusion

The conditional probability kerné (e|¢’) implies that the averaged (reduced) energy logsas

it is equivalent to setting the expansion parametér Eq. 2.36 to zero. Finite barrier corrections,
that is correction terms of the order of (I,BV*) to the rate coming from the energy exchange
with the bath are obtained when considering the energy exghdynamics to first order in.16
This means that the conditional probability kernel has tissathree conditions. The first is

normalization

/m de'P(']e) =1, (4.1)

the second is that it gives the correct averaged energytlsss:

5(1—u+u£):/_Zde’(s—e’)P(s’\e). (4.2)

17



The third condition is that it obeys detailed balance. Thesans that if we write
P(e'le) =Ry (€'|e) AP (€', ¢) (4.3)

the correction tern\P (€', €) must be symmetric with respect to exchange’ofith ¢.
The conditions given in Egs. 4.1 and 4.2 are actually foudd@mns, not only two, since the
equalities must hold for any value of the eneggyAs shown in previous work (in Eq. 2.46 of

Ref.}” the minus sign before the — s’)4 term should be a plus sign ) this means that to lowest

order inu
o) _ g Mo BO|, (€
AP (g e) = 1+2+ 2 3 52
(e+¢€)

(12+ 125 + &%) [5(2+ d)—2(e— s’)z} + (21o)(e- 8/)4] :

6492 0

(4.4)

Some tedious integrations show that indeed this form obley<onditions of Egs. 4.1 and 4.2.
To derive the finite barrier corrected expression to the mgpgates one follows the same route as
described in the previous section, except that it becommaewbat more involved.

As shown in the Appendix, the final result, using the notation

. Blis) 2P (is) sirfk
¢lisk)= [1-P2(i9)] ( 1+ F3§(is)—2F30(is)cos(k)) (4-3)
and
®(5,k) = %/_Zdrd)(r—i/z, K) (4.6)

18



2m @ i
r = _r%d A dkcos(jk)sinz(g) eXp(%T/deMG(T—lZ,k) [Tzi ]>

1
yii

.exp {u (?cp(a,k) - (g +5) 2 (9, k))} : (4.7)

It is instructive to study the underdamped limit of the fuant® (5, k). One readily finds that

1
Iim®d(d.k)=—=, k#0. 4.8
Im®(5,k) =—5, k# (4.8)
On the other hand,
1
lim ®(5.0) = lim ®(d,2m) = =. 4.9
lim ®(5,0) = lim & (5,27) = 5 (4.9)

In other words in the underdamped limit, the function hasszahtinuity at the edges of the

interval. For the hopping rates, this implies that

7
lim i = lim ! 4.1
oo | T oy | (5)exp< 4“) (4.10)

Wherergo) (0) are the hopping rates as obtained without finite barrierections, that is as in Eq.
3.34.
From the definition of the diffusion coefficient (Eg. 3.30)eatten finds that the finite barrier

correction for the diffusion coefficient in the underdamiedt is:
lim D =D exp —zu (4.11)
0—0 4

whereD© is the diffusion coefficient without finite barrier corremtis (Eq. 3.35).
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In the overdamped limit

lim ®(5,k) = %cosk/ drexp{—é(r2+%>}

00—
Vo deosk 6

so that the finite barrier correction to the rates and thaisiidin coefficient which comes from the
depopulation factor, goes to unity. It is in fact instruetto study this limit in some more detail.

When the energy loss is sufficiently large - 1) one also notes that:

/ dTInG< _ k)[ 1+%1] :4cos(k)M+O[exp<—g)} (4.13)

Vo

This then implies that to leading order in eéqa%) :

M = 8ol {1 exzp\gn_? (“5(31 %) +4)}
+(0j1+0j,-1) s % - ex;\g;_j) (ua(i_ ) +4):|
+(0j2+0j,2) T exj\g;—f) (HC‘;(i— %) +4)} . (4.14)

implying that to this order only single and double hops dbnte.

This exponential hopping limit without the finite barrierroections has been studied in some
detail in Refs?2:23For our purposes here we note that a consequence of the agsuthptd > 4
is that if u&2 — 16 > 0 thenl ., is negative, which is of course an unphysical result. In ligt
the perturbation theory ip is no longer valid so that the negative value is not a failihthe finite
barrier correction theory. But it does point out that one namsploy the finite barrier correction
with care. To compute the diffusion coefficient for any vab@iehe friction when including the

finite barrier correction we then employed the followingagdgy. On the one hand, the outgoing
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rate from the initial well -—I"o must equal the sum of all incoming ratég j # 0. On the other
hand we set any incoming rate which is negative, equal to Cassoire the proper normalization

we then renormalize the rates such that (notingfthat I _)

o
22?’:1“9 (Fj)’

rj=-r;e(r; j#0 (4.15)
WhereI:j denotes the renormalized rate into the j-th well &a) is the unit step function. This
assures that indeed o = 22]‘”:1 Fj. The renormalized diffusion coefficient is then obtainexhir
the relationship

Szélzz j2r. (4.16)

j=—w
In the numerical examples studied below we find that the reabration is close to unity for
almost all values of the friction. Negative values are aiedionly when the rates are in any case
negligibly small.

A final word of caution. In the absence of finite barrier coti@ts, one employs the trigono-
metric representation of the Dirac "delta” function (Eq313.to obtain a direct expression for
the diffusion coefficient (Eq. 3.33) by performing two intajons by parts. Formally, one may

suggest to use the same strategy also when including the faitier correction. The resulting

expression, when ignoring terms sucrkgw andkzw gives the expression:
D = Dgexp {u (%%(5,0) — (g +5) q>2(5,0))} (4.17)

whereDy is the diffusion coefficient in the absence of finite barrierrections as given in Eg.
3.33. However, this has two drawbacks, one is that it imiyiencludes the negative rates, when
they occur. Secondly, due to the discontinuity of the fumrectb (5, k) in the limit thatk is finite
andd — 0 this result is no longer correct in this limit. We shall sedolw that Eq. 4.17 is useful

as long a9 is not too small.
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V Application to a periodic potential with Ohmic friction

V.1 Properties and integrals for Ohmic friction

For Ohmic friction §/(t) = 2yd(t)) the spectral density of the normal modes is:

Y(A) = Ay .
(w¢2+A2) +A2y2

We also note the following identities and notation:

)\i V y2—|—400¢2—y
2

PR s V Y+ 4w*?
2

whereA* andA; are the roots of the Kramers-Grote-Hynes equation (2.5).

Following Ref2! we also use the notation

(A24+1)24
/\2+/Jy smr?( )

Ma(y) = / d)\

2 Wy 2 ) 2 5( 2 1 2
= St (B L)W () = 2 (7= 1) = ok (K
with
l 1
V) =S ——
() n;(uy+n)2
In the weak damping limit
1
A, Me (Hy) = 157
and conversely, in the strong damping limit
I|m uyM4(uy) Er
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V.2 Turnover theory for the cosine potential

We consider the periodic potential
& 27
V(gq) = ——cos| — (5.9)

such thav/* is the barrier height for escape. The barrier frequencyen:th

2 ¥
s 27

— W- (5.10)

To derive an analytic expression for the energy losses, wethat the time dependence of the
trajectory moving under the influence of the periodic pasr{Eq. 5.9) initiated at one barrier

(g= —1/2) att = —o, reaching the adjacent barrigr=1/2) at the timet = o is

tan(%) = exp(w*t) . (5.11)

Similarly, for the effective Hamiltonian for the unstabl®de motion

P V# < 2mi*p )
Hp = — + —=-cos 5.12
Pm2 7 2 VMo (5.12)
we have that the trajectory is
yre; t
tan<—) =exp(A-t (5.13)
2, ) =)

and we used the renormalized lattice length as given in B. 2.

In the Mel'nikov Meshkov (MM) formulatiof® one finds that the energy loss is

. 2
Sum = BMy/_mdt @—?‘) - 4Bv¢§. (5.14)
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For the theory presented in this paper, we find, using Eq. th&@he energy loss is

& =2BV* (1, — 1) |21+ (1—u5) ki ( !

S (5.15)
2
“VTH + k)

and this function is a monotonically increasing functiortiod friction coefficient. In the small

friction limit this energy loss is identical to the MM estitea

- 4
lim & = 4pV* L. = oy 5.16
b P w* M (5.16)
In the large friction limit:
16
lim 6 = —pV*. 5.17
jmo =3P (5:17)

This is not identical to the MM result, which diverges.

V.3 Finite barrier corrections for the cosine potential
V.3.1 Corrections due to the energy exchange process

The main effort goes into estimation of the expansion patame(Eq. 2.36). The symmetry of

motion here is different than in the cubic potential, theozéétr order motion along the unstable
mode is antisymmetric in time. Using the notation of Eq. 2:&5note that for the periodic cosine
potential:

X(t) = =y [sinh<2A *t) 2 *t} . (5.18)

After some lengthy algebra we then find that (see Eq. 2.34)

1—p2
BDE; = 4y (Hy— 1) (uyw’ <”VT+1) —1—%4/’ (uy))‘ (5.19)
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The limits are then

. Ay (TP
and
. 16
lim BDE; = =~ (5.21)

These results are roughly half the results that one findsh®rcubic oscillator, and this makes
sense, since here we have only half a period, in the sensththptirticle traverses over the well

only once rather than twice as in the cubic case. Furthermore

=M s = B\ 6 1) = pve (522)

BDE, 1 (n? ) 0.64

so that the finite barrier correction to the diffusion coédiint in the underdamped limitis e%p%u) ~

oo ).
V.3.2 Finite barrier correction in the spatial diffusion li mit

The potential is separated into a parabolic part and a neslicorrection as in Eq. 2.3. Following
Ref.,!® due to the symmetry of the potential about the bottom of thi, e the lowest order

correction, one only needs to average over the symmetricgsafollows:

2w¢2Q2 [e4]
Vig) = ,/BXT /_ dxexp(—Bw A ANV(X)
1 1

Vi
-2 {1_ exp[_ BV:CX} - BV*X} 629)

and the nonlinearity parameter for Ohmic friction is:

2
R i 4 (5.24)

X=0n—AfE Ty
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The spatial diffusion FBC is then to leading order:

1 1
Kep=1—B(Vis) ~1— ABVEx2 +0 (B2V¢2> . (5.25)

V.4 Numerical results

For the model computations presented below, we chesd,V* = 1,M = 1 so that the barrier
frequency is (cf. Eq. 5.1Qp* = V212 ~ 4.4429. The numerical calculations described here use a
high quality random number generatdrhaving a period of 338x 10°/, as described in Ref

One initiates trajectories trapped in an initial well witBaltzmann distribution

Pp.q ) =e| -6 (L v@nan)| (5.26)

whereV (q) is given in Eq. 5.9]1(x) is the rectangular function, i.e. 1 fix| < 1/2 and 0 oth-
erwise, and is the lattice length. The initial momentumis thus a Gaussian random variable
with O average an1 /(3 variance. The initial coordinatgis determined through the same 2 step
rejection procedure, described’ihadapted for the periodic potential.

Trajectories are propagated using a 4th order Runge-Kigigithm, with a time step og%g)—’;
The random force is taken into account using the procedytaieed in?° Trajectories are prop-
agated for a time that is sufficiently long such that one olesediffusional motion, that i$g?)
becomes a linear function of time. In practice, this meaat they were propagated for a time
which was at least 10 tsr (with I'tsr defined in Eq. (3.7)).

The diffusion coefficient is determined by averaging oved,800 trajectories. The last third of
the time interval, is fit by minimizing the least square distaof the data from a linear dependence
on time. The slope of this line, divided by 2 is the numerieasult for the diffusion coefficient.

In Figure 1 we first plot the dependence of the finite barrierezgion expansion parametgr

defined in Eq. (2.33) on the reduced friction coefficigyito*. Sinceu scales as A(BV*)), the

figure displays3V*u or equivalently it shows: for BV* = 1 . The condition for validity of the
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Figure 1: The dependence of the finite barrier correctiorapgjpn parametgn on the reduced
friction coefficienty/w*. For further details see the text.

finite barrier correction to the diffusion coefficient is tha< 1. This condition is not met, for low
reduced barriers.

Numerical results are provided in Table 1. The accuracy eflmerical results is a function
of both the (reduced) barrier height and the magnitude ofrén@uced) friction coefficient. The
more rare the event, the larger is the sample needed. Foeshis presented in the Table the
typical accuracy foBV* = 8 is a few ppms foy/w* >5.6e-3 but this degrades to several tens of
ppm for lower friction. FoBV* = 5 the accuracy is- 10 ppm fory/w* >5.6e-3 and it degrades to
several tens of ppm up to 100 ppm for lower friction. The tgbaccuracy foBV* = 2 is several
tens of ppm fory/w* >5.6e-3 and it degrades to several hundreds of ppm for lowaesa For

this low gap size, we didn't go below/ w* =3.16e-3, as the accuracy would further degrade to
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several thousands of ppm.

Table 1: Numerical results for the diffusion coefficient fbe periodic potential defined in Eg. 5.9,
for three reduced gap siz8¥* = 2,5,8. The dimensions are determined by the specific choice of
the parameters used, thatis=1,| = 1,V¥ = 1.

v/ Wt BVT=2[BVFi=5 |[pVi =38 y/wt [BVT=2 [BVT=5 |pBVi=8

0.001 0.40241 | 0.013297 | | 0.13335| 0.20100 | 0.0066898 | 2.8135e-04
0.001333 0.29606 | 0.010768 | | 0.17783| 0.16384 | 0.0057339 | 2.4904e-04
0.001778 0.23261 | 0.0080552| | 0.23713| 0.13490 | 0.0049773 | 2.2390e-04
0.002371 0.17127 | 0.0060088| | 0.31623| 0.11161 | 0.0043764 | 2.0505e-04
0.003162| 4.1367 | 0.13647 | 0.0046123| | 0.42169| 0.093474| 0.0038979 | 1.8837e-04
0.004216| 3.4371 | 0.10222 | 0.0036115| | 0.56234| 0.078326| 0.0034983 | 1.7348e-04
0.005623| 2.7983 | 0.078927 | 0.0027971| | 0.74989 0.065765| 0.0031218 | 1.5835e-04
0.007498| 2.2317 | 0.061136 | 0.0021455| | 1.0 0.054527| 0.0027418 | 1.3980e-04
0.01 1.7556 | 0.046946 | 0.0016649| | 1.33352| 0.044333| 0.0023430| 1.2041e-04
0.013335| 1.3449 | 0.036913 | 0.0013339| | 1.7783 | 0.035368| 0.0019483 | 1.0047e-04
0.017783| 1.0346 | 0.028818 | 0.0010550| | 2.37137| 0.027683| 0.0015657 | 8.1308e-05
0.023714| 0.81920 | 0.022661 | 8.4046e-04 | 3.1623 | 0.021368| 0.0012313 | 6.4423e-05
0.031623| 0.63062 | 0.018198 | 6.7706e-04 | 4.21696| 0.016267| 9.5327e-04 5.0003e-05
0.042170| 0.49536 | 0.014553 | 5.5091e-04 | 5.0 0.013814| 8.0492e-04 4.2584e-05
0.056234| 0.38944 | 0.011730 | 4.5442e-04 | 6.0 0.011580| 6.8036e-04 3.5861e-05
0.074989| 0.31209 | 0.0096163 3.8123e-04 | 7.0 0.009964| 5.8544e-04 3.0863e-05
0.1 0.24938 | 0.0079304| 3.2522e-04 | 8.0 0.008748| 5.1270e-04 2.7088e-05

The numerical results are compared with the theoreticailies Figs. 2-4 where we show

the diffusion coefficient as a function of the reduced fdntifor the reduced barrier heights of

BV* =2, 5and 8 respectively. In each Figure we plot the numeyiedact diffusion coefficient,

the diffusion coefficient without any finite barrier corrieet (FBC), as obtained from Eq. (3.35)

with kpg = 1, and the diffusion coefficient obtained by including batie £nergy and spatial

diffusion finite barrier corrections as obtained from Eql@) andkgg from Eq. (5.25). In each

Figure, the left panel shows the diffusion coefficients dmright panel the error of the analytic

diffusion coefficients relative to the numerically exacdtuk defined as:

AK =

Ki — KN

(5.27)

wherek;, is the analytic estimate obtained without or with the FB®@jlevky is the numerically

28



exact result.

Bv#=2 Bv#=2

Ahalytic no FBC
Analytic with FBC

Analytic no FBC
Analytic with FBC
Numeric *

AK
o o
N IS
( )

1072 1072 107t 10° 10t 1073 1072 107t 10

Figure 2: Diffusion coefficients for the reduced g@p* = 2: The left panel compares the analytic
diffusion coefficients with and without FBC'’s to the numeidly exact diffusion coefficient. The
right panel shows the relative errors (see Eq. (5.27)). Tiks are as in Table 1.

Bvt=s5 Bvf=5
10° — ; 0.25 - ,
Analytic no FBC Analytic no FBC
Analytic with FBC Analytic with FBC
Numeric * 0.2 +
107t
0.15
x 1072 4 0.1
0.05
1073
ol
-4
10 ‘ ‘ ‘ ‘ ~0.05 ‘
1074 1073 1072 107t 10° 10t 1074 1072 1072 107t 10° 10t

y/w Y/

Figure 3: Diffusion coefficients for the reduced g8+ = 5. The notation is as in Fig. 2.

One notes that (as expected) the analytical results immystematically with increasing bar-
rier height. At the same time, the finite barrier correctiamsicantly improves the accuracy of
the estimate. For the lowest barrigv* = 2 the error even with the finite barrier correction be-
comes significant, especially in the underdamped limit. dhantitative failure in this limit was

also found when considering escape from a cubic potensamnay be seen in Fig. 5 of Réf.
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Figure 4: Diffusion coefficients for the reduced g8¥* = 8. The notation is as in Fig. 2.

However, for the cubic potential, the analytic theory urdéimates the rate, while here it overes-
timates the diffusion coefficient. It is remarkable thoubhttalready for a reduced barrier height
as low asBV* = 5 the error with finite barrier corrections is less than 10%éoy value of the
friction coefficient.

Thus far the analytical estimate for the diffusion coefintieith finite barrier corrections was
obtained by the discrete summation as given in Eq. (4.16k @ay also formally carry out the
summation analytically and use the result given in Eq. (4.B&eping in mind that this compact
analytic result is valid provided that the reduced energg g is not too small. To obtain a better
feeling for the accuracy of the analytically summed expogs$Eq. (4.17)) we compare in fig-
ure 5 between the numerically summed and renormalized féigy 0(4.16) with the analytically
summed result (Eq. (4.17)). As may be discerned from therEjghe results are close to each
other provided that the reduced friction coefficient is &arthan~ 0.003, for which the reduced
energy loss i® ~ 0.63. For smaller values of the friction coefficient the summesllt is more
accurate. For alarger reduced barrier heigh\ét = 8, the lines cross at/ w* ~ 0.002, for which
0 ~ 0.56. We conclude, that except for the underdamped limit défagethe limit for which the

reduced energy loss is much smaller than unity, one mayysadelthe analytically summed result.
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Figure 5. The relative errord\k) for the analytically summed diffusion coefficient (Eq. 4,1
denoted as 'formula’) and the numerically summed form (E¢64lenoted as 'summing’) plotted
as a function of the reduced friction coefficient.

VI. Discussion

In this paper we considered the motion of a particle movingagreriodic potential influenced
by friction and Gaussian thermal noise. Two central resafésderived. The first is a uniform
expression for the diffusion coefficient, valid for any valaf the friction based on the normal
mode representation of the dynamics. This result is thegerpotential analog of the modified
PGH turnover theory for the escape rate, as presented if®Ref.

The second result is the derivation of finite barrier corced to the diffusion coefficient for
any value of the reduced friction coefficients. Such finitaileacorrections were considered pre-

viously only for escape from a potential well, but not forfdgion on a periodic lattice. Numerical
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simulation results demonstrated than indeed the finitadyazorrections improve the accuracy of
the zero-th order results, while at the same time showingftrareduced barrier heights of the
order of 5 or greater, the theory is quantitative (with armeaf at most 20%), even without the
finite barrier corrections. Even for a reduced barrier asde, we found that the turnover theory
does a reasonable job in predicting the diffusion coefficien

The theory presented here may be expanded in a few directidres have not considered
memory friction. In this context, as noted already in R&the present perturbation expansion
underlying the theory is not valid when the memory time beestoo long. In other words, the
turnover problem in the presence of long memory and peripdtentials remains open. On the
other hand, one may use the formalism presented here witlonydnction and the results should
be valid for not too long memory times. There is thus inteteggmploy the present work in this
limit and test its validity.

A second, not less interesting aspect of the theory is isnskbn to quantum mechanics. The
expressions presented here were derived under the assangptincoherent tunneling between
adjacent barriers at temperatures which are above theoserstemperature between deep tunnel-
ing and thermal activatioh! As discussed in Ret? such a theory may lead to unexpected results,
such that the quantum diffusion coefficient becomes smiéar the classical due to above barrier
guantum reflection. This warrants the further study of tle®ti presented here, in the semiclassi-
cal limit.

A third aspect is dimensionality. The theory presented l&s limited to one dimensional
diffusion. As already noted in the Introduction, such onmelsional diffusion has been ob-
served experimentally2 However, the challenge of deriving a multidimensional tiyeaf surface
diffusion remains opetf especially since in most cases, surface diffusion is noitditnto one
dimensional channels.

The results presented in this paper, together with previesuslts for the rate of escape from
a potential welt® suggest that the linear response theory which lies at the bethe turnover

theory'! is valid, even when the barrier height for escape is of thewoad the thermal energy,
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provided that one accounts for anharmonicity in the poaentihis has implications for recent
measurements on the transit time distribution betweeretblthd unfolded states of proteins and
nucleic acids and the residence time in each of the two stitesthese experiments, the proteins
are stretched using optical tweezers such that the equitibpopulations of the folded and un-
folded states are approximately equal. The transit timigibligion between the two states is then
measured and fit to a theoretical distribution based onlyssuming a parabolic barrier whose
height is large compared to the thermal enet§$? The resulting fits are inconsistent since they
imply much too low barriers ( a fraction of the thermal engrgiyhe present theory suggests that
here too, finite barrier corrections and the methodologggmted in this paper could go a long
way in resolving the discrepancy.

Finally we note that the formalism used here is applicableémy additional phenomena of
interest, whose underlying dynamics is described by a magteation who'’s structure is similar to
that of Eq. 3.1. These includ®the theory of sticking and desorption from surfaces, iooigging

in solids, cascade capture of electrons in semiconductatgdasephson systems.
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APPENDIX A: Derivation of the finite barrier correction to th e
hopping rates

The purpose of this Appendix is to provide some detail on #révedtion of the expression for the

finite barrier corrected hopping rates, given in Eq. 4.7 nfrExgs. 3.11,4.3 and 4.4 we note that

~ ~

P(is,€) =P(is) [1+ pvi(s) — peva(s)] (A.1)
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with

vi(s) = %5(5+2) (254 1) (5+1)?+ 205 (s+1) — 85 (A.2)

and
V2 (s) = 0s(s+1) {5T+25(57L 1)— 1] . (A.3)

(A.4)

Anticipating the usual choice of contour, we also note that:
: 2
3. it6(6+2) (12+1 1\ 1
(0+2) (1+4) +(r2+—>+—

. 1 . 3 .
Vl(—IT—é) = o0|art +§|r— > 7 >

a(rd) sl [ ) e

The integral equation for the steady state fluxes, as givefqgin 3.1 continues to be valid,

except that one must use the full conditional probab#itg’|€) instead of the zero-th order (ji)

probability Py (¢'|€). Noting that:

/00 deexp(—se)N (g,k) € = —w (A.6)

one finds after some algebra that the integral equation trigarder inu becomes:

N (is,k) +N[i (s—a),k] = Py (is) exp(ik) <N (is,—K) [L+ pvy ()] +wl,lvz (s))

+Py (is) exp(ik) (N (i(s—a),k)[1+ uvi(s)]+ ON{i (3; 3 ’k)uvz (s)) : (A.7)

Using the symmetry relations given in Egs. 3.14 and 3.15ngadhat the same relations hold also

for aN(iass’_k) and that? (is), v1 (S) and v, (s) are real allows us to replace the single equation A.7

with two equations for the real and imaginary parts.

Defining the operator

A Po (is) cosk d
O(is,k) = (1— U - F (i5) cosK {vl(s) +Vv2(9) %D (A.8)
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and noting that to leading order [n

A

O L(is k) ~2—O(is k) (A.9)

allows us to derive an equation for the imaginary part

I is, )+ 1m i (s—-2) K] = ISO[(liS—) %)st;ciiﬂs)

[1mN (i (s—a) , k) — ImN (is,K)]

1

~tartk [1— Py (is) cosK]

[1-O(is k)]

] [1mN (i (s—a), k) — ImN (is,K)]

N ( [1— Py (is) cosK]

T [1-O(is, k)]) [1mN (i (s—a) k) — ImN (is, k)] (A.10)

Using the ansatz as given in Eq. 3.23 \Aﬁt@(is, K) given in Eq. 3.21, noting that

- O%In N (i (s—a),k), (A.11)

dInNa (is, k) _ Tt { m(s+ 1)}
Js a

using the notation as in Eq. 4.5, keeping only up to lineangein u leads to the intermediate

result:

Ny (i (s—a),k) = G(is,k) Ny (is, k)
[1-P2(is)] ¢ (is.K) i
[1—05003) cosk] {Vl(SHVZ(S) (—5 Cot[
G(is k) P2 (is) &(25+1)v2(9)
[1-Re(is)] [1-Py(is)cosk]’

o TT(S+ 1)} 7]

. 0_3)] [Ny (is,k) + Ny (i (s—a), k)]

—psirfk [Ny (is, k) + Ny (i (s—a) k)] . (A.12)

We then use the notation as given in Eqg. 3.25 expanding howatlerespect tqu
g(lsa k) ZQO(Isa k)+“gl(lsa k) (A13)

such thagg (is, k) is the solution in the absence of finite barrier correctitimat is, it is the solution
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of Eq. 3.26 and has the property that
QO(i(S_a)ak)ZQO(is7k)‘ (A14)

To first order inu we then have that:

9o (is, k)

9 Ry (is, )+ R (i (s—a) )] { ds

ds ] [Ny (i, k) +Nq (i (s—a) k)] . (A.15)

Inserting all these results into Eq. A.12 and rearrangiagsdo:

Ny (i(s_— a),k) G(is k) <1+21J¢ (is,k) {W(S) +V2(s) (—gCOt[n(s+ 1)] + s k))} )

a Js

G(is k)5 (2s+1) _ Po (is) cosk
+Uv2 () 1= (i5)cos (‘P (lsak)—m> (A.16)

and this gives the desired analog of Eqg. 3.26

pga (i (s—a),k) —pdi(is,k) = 2u¢ (isk) [V1(5)+v2(s) <_7_;CO{7T(S;L1)]+o"GoéiSs,k))}
G(isk)o(2s+1) [ . Po (is) cosk

[1— Py (is) cosK] <¢ (Is’k>_m>

L (is,K) (A.17)

+uv2(s)

whose solution is knowns?

L (s k) = % /Z 1 L (iy.K) {cot(n(sT_y)) +cot(wn . (A.18)

The remaining task is then to insert the explicit resultlidiy, k) and change the contour to

z=-1/2 andiy = 1 —i/2 and take the classical limit that— c. One finds

lim 81 (~ia,k) = ?(D(é,k) - <g +5) 2 (5,k) (A.19)
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with @ (J,k) defined as in Eq. 4.6. This then implies that the finite bao@erected expression for

the hopping rates is as given in Eq. 4.7.
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