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Abstract

Kramers’ turnover theory as derived by Pollak, Grabert and Hänggi (PGH) suffers

from a few drawbacks. The energy loss in PGH theory is not a monotonic function

of the friction. Secondly, the theory is not applicable to surface diffusion, since the

effective potential for the system does not conserve the periodicity of the potential.

Thirdly, when the reduced barrier height is low, it is rather inaccurate. In this paper,

we present a modification of PGH theory which alleviates these drawbacks. We also

introduce a finite barrier correction term which takes into consideration that the energy

interval of the escaping particle is bounded from below. The resulting theory is tested

for motion on a cubic potential and relatively low reduced barriers.

Keywords: rate theory; Kramers’ turnover theory ; PGH theory; Classical perturbation

theory.
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Introduction

The Kramers’ turnover problem1,2 for the influence of friction on the rate of escape of a

particle from a potential well was seemingly solved over twenty years ago. First, Mel’nikov

and Meshkov (MM) provided a framework valid for Ohmic friction.3,4 Pollak realized that

Kramers’ expression in the spatial diffusion limited regime is identical to variational transi-

tion state theory.5 Grabert and Pollak, Grabert and Hanggi (PGH) then used the normal

mode representation of the dissipative Hamiltonian in the vicinity of the barrier to derive a

continuum limit expression which was valid for any value of the friction, provided that the

barrier height was much greater than the thermal energy
(
V ‡ ≫ kBT

)
.6,7

The theory was further refined to include in it the effect of a finite barrier, first in the

spatial diffusion limit8 then in the weakly damped to moderately damped regime within the

Melnikov-Meshkov formulation9 and lately also within the PGH formalism.10,11 Our recent

studies have demonstrated that the quality of both approaches is similar in the presence of

Ohmic friction. Why then another paper, on a topic which seems to have been exhausted?

Only lately has it been demonstrated that the Kramers turnover may be observed in a

”real” chemical system. Garcia-Muller et al12,13 have shown this for the isomerization of

LiCN to LiNC in the presence of an Ar solvent. They observed good agreement between

numerical estimates of the rate and PGH theory, even though the reduced barrier height

V ‡/kBT was relatively low, in both cases studied by these authors it was 0.44 and 1.43. It is

therefore of some practical interest to understand how limiting is the formal mathematical

theory which imposes the condition of large reduced barriers for the PGH turnover theory

to be valid.

But there are additional reasons for wanting to take a renewed look at theory. As already

noted in Ref.,14 in PGH theory the energy loss from the system to the bath is not a monotonic

function of the friction strength, as it is in the MM formulation. This seems to be a bit

nonphysical, one would expect that increasing the friction would always increase the energy

loss to the surrounding. Of course, when the friction becomes large, the perturbation theory
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which underlies the theory for the depopulation factor is no longer valid. However, a theory

which combines the rigor of the PGH derivation and in which the energy loss is a monotonic

function of the energy, would perhaps be preferable. This is one of the first results of the

new approach to be presented in this paper.

A second drawback which has not been addressed previously is that in the derivation

of the turnover expression, the lower limit for the energy is taken to be minus infinity. As

long as V ‡ ≫ kBT corrections to this assumption are exponentially small, of the order of

exp
(
−V ‡/kBT

)
. But when the reduced barrier height is of the order of unity, this simplifying

assumption has to be corrected. Such a correction of the turnover theory is considered in

the present paper.

A third drawback is that to date, PGH theory was never applied to the diffusion problem

and with good reason. If one follows the PGH formalism, then although the system potential

is periodic, the effective potential for the unstable mode is not. This result seems unphysical,

challenging us to come up with a better formulation. The new PGH formalism presented

here formally overcomes this difficulty.

The modification of PGH theory is not the first one to be attempted. It is of special

interest to note the modified PGH theory proposed by Reese and Tucker.15 They used a mean

field approach for the motion along the unstable mode, in which the force is determined by

a thermally averaged collective bath mode coordinate. They introduced this correction to

account for reaction path curvature. In our present theory, the change in the equation of

motion for the unstable mode is not temperature dependent, so that implementation is much

simpler than the theory of Reese and Tucker.

Drozdov and Brey16 suggested that the energy loss which is central to all turnover theories

should not be computed from perturbation theory but from the zero-temperature generalized

Langevin equation. However implementing this within the turnover theory formalism of MM

or PGH is not derived, but taken as an ansatz. More recently, Mazo et al have considered

separately in some detail finite barrier effects both in the underdamped17 and in the spatial
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diffusion limited regime of moderate to strong damping18 however these authors do not relate

directly to the turnover theories of MM and PGH.

The paper is structured as follows. In Section II we provide a brief review of PGH theory

with finite barrier corrections. The improved formalism is then presented in Section III

with finite barrier corrections that take into consideration the fact that the energy does not

extend to minus infinity. Finally, in Section IV we consider the example of escape from a

cubic potential, comparing theory with precise numerical simulation. We find that for a

reduced barrier height of 4, over a range of four decades of the reduced friction coefficient,

the error is at most 8 percent and typically, it is two percent or less. For a reduced barrier

height of 2 the error over the same friction range, goes from an underestimate of 52 percent

at low friction to an underestimate of 7 percent in the high friction range. The theory is

most accurate in the turnover region, with the underestimate reaching less than 4 percent.

We end in Section V with a discussion of the results, noting the limitations of the present

approach when considering memory friction.

A brief review of PGH theory

Preliminaries

The classical dynamics of the generic system is that of a particle with massM and coordinate

q whose classical equation of motion is a Generalized Langevin Equation (GLE) of the form:

Mq̈ +
dV (q)

dq
+M

∫ t

0

dt′γ (t− t′) q̇ (t′) = F (t) . (2.1)

F (t) is a Gaussian random force with zero mean and correlation function

⟨F (t)F (t′)⟩ =MkBTγ (t− t′) . (2.2)
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γ (t) is the friction function, kB is Boltzmann’s constant and T is the temperature. The

potential is assumed to have a well at qa with frequency ωa and a barrier at q = 0 which

separates the well from a continuum. The harmonic (imaginary) frequency at the barrier

top is denoted as ω‡. The potential is then written as

V (q) = −1

2
Mω‡2q2 + V1 (q) (2.3)

and V1 (q) is termed the nonlinear part of the potential function.

When one ignores the nonlinear part of the potential the resulting Hamiltonian has a

quadratic form and may be diagonalized.19 We denote the (unstable) mass weighted normal

mode and momentum as ρ and pρ respectively and the stable bath normal mode coordinates

and momenta as yj and pyj respectively. The full Hamiltonian may then be expressed as:

H =
p2ρ
2

− 1

2
λ‡2ρ2 + V1 (q) +

1

2

N∑
j=1

[
p2yj + λ2jy

2
j

]
(2.4)

where λj denoted the frequency of the j-th normal mode. λ‡ denotes the unstable normal

mode barrier frequency and it may be obtained with the Kramers-Grote-Hynes relation:1,20

λ‡2 + γ̂
(
λ‡
)
λ‡ = ω‡2 (2.5)

where γ̂ (s) stands for the Laplace transform of the time dependent friction. The system

coordinate q is expressed in terms of the normal modes as

√
Mq = u00ρ+ u1σ (2.6)

with

u1σ =
N∑
j=1

uj0yj (2.7)
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and

u21 = 1− u200 =
N∑
j=1

u2j0 (2.8)

The nonlinear part of the potential V1 (q) couples the motion of the unstable normal mode

to that of the stable normal modes. The matrix element uj0 is the projection of the system

coordinate on the j-th normal mode. The projection of the system coordinate on the unstable

mode u00 is given by the relation:7

u200 =

[
1 +

1

2

(
γ̂
(
λ‡
)

λ‡
+
∂γ̂ (s)

∂s
|s=λ‡

)]−1

. (2.9)

Finally, the assumption of weak coupling between the system and the bath is expressed as:7

u21 ≪ 1. (2.10)

The normal mode ”friction kernel” is defined as:

K (t− t′) =
N∑
j=1

u2j0
λ2j

cos [λj (t− t′)] . (2.11)

Using properties of the normal mode transformation (see for example Eq. 2.17 of Ref.19)

one may readily express the Laplace transform (denoted by a ”hat”) of the kernel as

K̂ (s) =

(
su200

λ‡2 (s2 − λ‡2)
+

s+ γ̂ (s)

ω‡2 (ω‡2 − s2 − γ̂ (s) s)

)
(2.12)

so that it is known in the continuum limit. Moreover, the spectral density of the stable

modes is defined as:

I(λ) =
π

2

N∑
j=1

u2j0
λj

[δ(λ− λj)− δ(λ+ λj)] (2.13)

so that:

I(λ) = λRe
[
K̂(iλ)

]
=

λRe [γ̂ (iλ)]

(ω‡2 + λ2)2 + λ2γ̂ (iλ) γ̂ (−iλ)
. (2.14)
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The rate expression

In Kramers’ turnover theory the rate factorizes as a product of three terms. One, is the

”standard” transition state theory expression for the rate:

ΓTST =
exp

(
−βV ‡)

(2πMβ)1/2
∫∞
−∞ dq exp (−βV (q)) θ (−q)

. (2.15)

The second factor is the spatial diffusion factor, better known as the Kramers-Grote-Hynes

transmission factor20

κ0SD =
λ‡

ω‡ (2.16)

where the superscript 0 has been added to denote that this is the expression without finite

barrier corrections. The spatial diffusion transmission factor is unity in the weak damping

limit and goes to zero inversely with the damping strength in the strong damping limit.

The third factor, known as the depopulation factor accounts for the finite rate of exchange

of energy between the system and the bath. It is determined completely by the average energy

lost ⟨∆E⟩ to the bath, as the system traverses from the barrier over the well and back to

the barrier. Introducing the reduced energy loss

δ = β ⟨∆E⟩ , β =
1

kBT
, (2.17)

the depopulation factor, is then given by the expression

Υ0 = exp

 1

2π

∫ ∞

−∞
dτ

ln
[
1− P̃ 0

(
τ − i

2

)]
τ 2 + 1

4

 (2.18)

where we used the notation:

P̃ 0

(
τ − i

2

)
= exp

[
−δ
(
τ 2 +

1

4

)]
(2.19)
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and here too the superscript 0 serves to remind us that these are the expressions without

finite barrier corrections. In the underdamped limit, the energy loss δ ≪ 1 and Υ0 ≃ δ, in

the strong damping limit, the energy loss becomes large and the depopulation factor goes to

unity. The full turnover expression for the rate is then

Γ0 = ΓTSTκ
0
SDΥ

0 (2.20)

and here too the superscript is used to denote that this is the result without finite barrier

corrections.

Finite barrier corrections

Finite barrier corrections in the spatial diffusion limited regime have been derived by Pollak

and Talkner (Eq. 4.4 of Ref.8). The spatial diffusion factor for a cubic potential is:

κSD
κ0SD

= 1 +
1

36βV ‡χ2

(
2− 3χ− 6 (χ+ 1)λ‡6

π2u400

∫ ∞

−∞
dλ

∫ ∞

−∞
dλ′

I (λ) I (λ′)

λλ′
[
λ‡2 + (λ+ λ′)2

])
(2.21)

and the ”nonlinearity parameter” χ is:

χ−1 =
u200ω

‡2

λ‡2
− 1. (2.22)

Finite barrier corrections to the depopulation factor have been recently derived within

the PGH formalism.10,11 Following Mel’nikov,9 one considers, using perturbation theory, the

temperature and energy dependence of the energy loss to leading order. Taking the barrier

energy to be the zero of the energy of the system and using ε to denote the reduced energy

in terms of kBT , the average energy loss is expanded as:11

β ⟨∆EB⟩ ≃ δ (1− µ+ µε) . (2.23)
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An expression for the expansion parameter µ will be given in the next Section. The finite

barrier corrected depopulation factor is then:

Υ = Υ0 exp

(
−µΦ2 (δ)

[
1 +

δ + 2

8

]
+
µ (δ − 2)

4
Φ (δ)

)
(2.24)

with

Φ (δ) =
δ

2π

∫ ∞

−∞
dτ

P̃ 0
(
τ − i

2

)
1− P̃ 0

(
τ − i

2

) . (2.25)

A new PGH theory

The modified theory

The normal mode Hamiltonian may be rewritten exactly as:

H =
p2ρ
2

+ V

(
u00ρ+ u1σ√

M

)
+

1

2
ω‡2 (u00ρ+ u1σ)

2 − 1

2
λ‡2ρ2 +

1

2

N∑
j=1

[
p2yj + λ2jy

2
j

]
. (3.1)

In the ”standard” PGH theory one assume that the coupling parameter u1 is the small

parameter of the problem so that to zero-th order the motion of the unstable mode is

governed by the Hamiltonian

Hρ,PGH =
p2ρ
2

+ V

(
u00ρ√
M

)
+

1

2

(
ω‡2u200 − λ‡2

)
ρ2. (3.2)

The effective potential appearing here is qualitatively different from the potential V (q), for

example, the barrier height for escape now becomes dependent on the friction. Or, even if

V (q) is a periodic potential, the potential governing the unstable mode motion is no longer

periodic due to the quadratic term.

To overcome these difficulties we define a coordinate σ∗ (ρ) by demanding that

ω‡2 (u00ρ+ u1σ
∗)2 = λ‡2ρ2. (3.3)
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Using then the notation

u1σ = u1σ
∗ + u1∆σ (3.4)

so that:

u1∆σ = u1σ +

(
u00 −

λ‡

ω‡

)
ρ (3.5)

we have that the exact Hamiltonian is:

H =
p2ρ
2

+ V

[
1√
M

(
λ‡

ω‡ρ+ u1∆σ

)]
+ ω‡λ‡ρu1∆σ +

1

2
ω‡2u21∆σ

2 +
1

2

N∑
j=1

[
p2yj + λ2jy

2
j

]
.

(3.6)

We will then consider the ”small parameter” to be u1∆σ.

Note that for a parabolic barrier potential:

Vpb

[
1√
M

(
λ‡

ω‡ρ+ u1∆σ

)]
+ ω‡λ‡ρu1∆σ +

1

2
ω‡2u21∆σ

2

= −1

2
ω‡2
(
λ‡

ω‡ρ+ u1∆σ

)2

+ ω‡λ‡ρu1∆σ +
1

2
ω‡2u21∆σ

2

= −1

2
λ‡2ρ2 (3.7)

in other words, for a parabolic barrier we regain the separable dynamics of the normal modes.

Any coupling between the unstable mode and the stable modes necessarily comes from the

nonlinear part of the potential. This also means that the Hamiltonian may be recast as:

H =
p2ρ
2

− 1

2
λ‡2ρ2 + V1

(
1√
M

(
λ‡

ω‡ρ+ u1∆σ

))
+

1

2

N∑
j=1

[
p2yj + λ2jy

2
j

]
.

(3.8)

The zero-th order dynamics of the unstable normal mode will then be determined by the
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zero-th order unstable mode Hamiltonian

Hρ =
p2ρ
2

+ V

(
λ‡√
Mω‡

ρ

)
=

p2ρ
2

− 1

2
λ‡2ρ2 + V1

(
λ‡√
Mω‡

ρ

)
(3.9)

in other words, close to the barrier top, the zero-th order barrier remains the same as

before, it is quadratic in the unstable mode coordinate. The central differences between this

representation and the previous one is that the added quadratic term has been eliminated

and the argument of the nonlinear part of the potential has changed from u00ρ/
√
M to

λ‡ρ/
(√

Mω‡
)

. This means that the shape of the potential has not changed, only the

effective mass of the motion is nowMω‡2/λ‡2, or in other words, friction has led to a heavier

effective mass. The zero-th order dynamics of the bath remains the same as a collection of

uncoupled harmonic oscillators.

Following the ”standard” PGH formalism, the Hamiltonian is then expanded to first

order in u1∆σ:

H ≃ Hρ + V ′
1

(
λ‡√
Mω‡

ρ

)
u1∆σ√
M

+
1

2

N∑
j=1

[
p2yj + λ2jy

2
j

]
(3.10)

where the prime denotes differentiation with respect to the argument. The first order equa-

tion of motion for the j-th bath oscillator is then:

ÿjt,1 = −λ2jyjt,1 −
uj0√
M
V ′
1

(
λ‡√
Mω‡

ρt,0

)
(3.11)

so that yjt,1 is obtained as the solution for a forced harmonic oscillator:

yjt,1 = − uj0√
M

∫ t

−∞
dt′

sin [λj (t− t′)]

λj
V ′
1

(
λ‡√
Mω‡

ρt′,0

)
. (3.12)

The reduced average energy gained by the bath as the unstable mode traverses from the
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barrier over the well and back to the barrier is given by:

δ ≡ β

2M

∫ ∞

−∞
dt

∫ ∞

−∞
dt′V ′

1

(
λ‡ρt,0√
Mω‡

)
∂2K (t− t′)

∂t∂t′
V ′
1

(
λ‡ρt′,0√
Mω‡

)
. (3.13)

Using the definition of the spectral density of normal modes, this may then be recast in the

more convenient form:

δ =
β

2πM

∫ ∞

−∞
dλλI(λ)

∣∣∣∣∫ ∞

−∞
dt exp (−iλt)V ′

1

(
λ‡ρt,0√
Mω‡

)∣∣∣∣2 . (3.14)

These last two expression lie at the heart of the ”improved” PGH theory, the form is similar

to the ”old” PGH expression for the energy loss, it differs however, since the argument of

the force in the old theory u00ρt,0√
M

is replaced by λ‡ρt,0√
Mω‡ in the new theory and the equation of

motion governing the zero-th order dynamics of the unstable mode has also been modified.

Similarly, following the derivation as presented in Ref.11 but using the new perturbation

theory formulation, one readily finds that the expansion parameter µ (Eq. 2.23) is given by:

µ = −1

δ

∫ ∞

−∞
dt

∫ ∞

−∞
dt′
dV ′

1

(
λ‡ρt,0√
Mω‡

)
dt

∂K (t′ − t)

∂t

dV ′
1

(
λ‡ρt′,0√
Mω‡

)
dt′

∫ t

t′
dt′′

1

p2ρt′′ ,0
.

(3.15)

The only difference between this expression and the analogous one given in Ref.11 is as before

when considering the energy loss, the argument of the force is now λ‡
√
Mω‡ρt instead of u00√

M
ρt,

and the zero-th order trajectory is governed by the modified zero-th order Hamiltonian (Eq.

3.9). It is worthwhile to recast this expression in terms of the spectral density of the normal

modes. Using the notation

X (t) =

∫ t

dt′
1

p2ρt′ ,0
, (3.16)
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one finds after some manipulations that:

µ = − 2

πδ

∫ ∞

0

dλI(λ)

∫ ∞

−∞
dtX (t) cos (λt)

dV ′
1

(
λ‡ρt,0√
Mω‡

)
dt

∫ ∞

−∞
dt sin (λt)

dV ′
1

(
λ‡ρt,0√
Mω‡

)
dt

.

(3.17)

Finite barrier correction to the transition kernel

The derivation of finite barrier corrections to the depopulation factor were predicated on

the assumption that the energy of the particle varies from −∞ to ∞. This is not precise,

since the reduced energy of the unstable mode cannot be lower than the bottom of the well

in which the particle is trapped. To account for this, one must limit the (reduced) energy

integration to the interval
[
−βV ‡,∞

]
. More specifically, in the absence of finite barrier

corrections, the (reduced) energy transfer probability kernel for the particle initiated at the

barrier with (reduced) energy ε to return to the barrier with energy ε′ is the Gaussian kernel:

P 0 (ε′|ε) = 1√
4πδ

exp

(
−(ε′ − ε+ δ)2

4δ

)
. (3.18)

The two sided Laplace transform of this kernel is:

P̃ 0 (is) =

∫ ∞

−∞
dε′ exp (−sε′)P 0 (ε′|ε) (3.19)

= exp
[
δ
(
s2 + s

)]
where explicitly the integration is over the real axis, that is [−∞,∞]. This was then used

in Eq. 2.18 for the depopulation factor and in Eq. 2.25 for the finite barrier correction to it.

If one limits the integration to the interval
[
−βV ‡,∞

]
one has that:

P̃ (is; ε) =

∫ ∞

−βV ‡
dε′ exp (−sε′)P 0 (ε′|ε)

=
1

2
exp

[
δ
(
s2 + s

)]
exp (−sε) erfc

(
−βV‡ − ε+ δ + 2δs

2
√
δ

)
. (3.20)
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Expanding this expression about ε = 0 and considering only the zero-th order term gives:

P̃

(
τ − i

2

)
≡ P̃

(
τ − i

2
; ε = 0

)
. (3.21)

In the limit that βV ‡ → ∞ the erfc term tends to 2 and we have regained the ”standard”

kernel. The finite barrier correction is then obtained by replacing the kernel P̃ 0
(
τ − i

2

)
in

Eqs. 2.18 and 2.25 with the corrected kernel P̃
(
τ − i

2

)
. We will refer below to the corrected

kernel as the ”EXP” correction, indicating that the correction is exponentially dependent

on the reduced barrier height.

As already noted, this ”EXP” correction is significant only when the reduced barrier

height is of the order of unity. In the underdamped limit, where the energy loss δ → 0

the erfc term again tends to 2 irrespective of the value of βV ‡, so that this correction

becomes insignificant. Conversely, in the strong friction limit δ becomes very large such

that P̃ 0
(
τ − i

2

)
becomes very small, and again this correction becomes insignificant. It is

important mainly in the turnover region.

Application to a cubic potential with Ohmic friction

For Ohmic friction

γ (t) = 2γδ (t) (4.1)

where δ (t) is the Dirac ”delta” function, the spectral density of normal modes is:

I(λ) =
λγ

(ω‡2 + λ2)2 + λ2γ2
. (4.2)

For the cubic potential

V (q) = −Mω‡2

2
q2
(
1 +

q

q0

)
(4.3)
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the barrier is located at q = 0 and the well at q = −2q0/3, The barrier height is thus

V ‡ =
2Mω‡2q20

27
. (4.4)

The time dependence of the coordinate for the trajectory initiated at t→ −∞ at the barrier

towards the well and returning to the barrier as t→ ∞ is:

qt = − q0

cosh2
(

ω‡t
2

) . (4.5)

The potential energy governing the motion of the unstable mode is (Eq. 3.9):

V (ρ) = −λ
‡2ρ2

2

(
1 +

λ‡

ω‡
√
Mq0

ρ

)
(4.6)

so that the ”effective” q0 is:

q0,NEW =
ω‡

√
M

λ‡
q0 (4.7)

and the time dependence for the unstable mode is:

ρt,0,NEW = − ω‡
√
Mq0

λ‡ cosh2
(

λ‡

2
t
) . (4.8)

In the old theory

VPGH (ρ) = −λ
‡2ρ2

2

(
1 +

ω‡2

λ‡2q0

u300ρ√
M

)
(4.9)

so that the ”effective” q0 is

q0,PGH =
λ‡2

√
M

ω‡2u300
(4.10)

and the time dependence for the unstable mode is:

ρt,0,PGH = − λ‡2
√
Mq0

ω‡2u300 cosh
2
(

λ‡

2
t
) (4.11)
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and

q0,PGH

q0,NEW

=
λ‡3

ω‡3u300
. (4.12)

Using Eq. 3.14 it is a matter of some algebra to show that the ”new” energy loss is:

δ = 108πβV ‡ν (ν − 1)M4 (ν) (4.13)

where the friction dependent parameter ν is the ratio of the two solutions of the Kramers

equation (Eq. 2.5)

ν =
γ +

√
γ2 + 4ω‡2√

γ2 + 4ω‡2 − γ
(4.14)

and14

M4 (ν) =
2

5π
− ν2

3π
+

2

π
ν3
(
ν2 − 1

)
ψ′ (ν)− 2

π
ν2
(
ν2 − 1

)
− 1

π
ν
(
ν2 − 1

)
(4.15)

with

ψ′ (ν) =
∞∑
n=0

1

(ν + n)2
. (4.16)

The result for the new energy loss (Eq. 4.13) should be compared with the ”standard”

PGH result

δPGH =
27π

4
βV ‡M4 (ν) (ν − 1)

(ν + 1)4

ν3
(4.17)

and the MM result:

δMM =
36 (ν − 1)

5
√
ν

βV ‡ =
36

5
βV ‡ γ

ω‡ . (4.18)

From Eqs. 4.13 and 4.17 one readily finds that

δ

δPGH

=
16ν4

(ν + 1)4
=

(
ω‡4u400
λ‡4

)2

(4.19)

In the weak damping limit
ω‡4u4

00

λ‡4 → 1 so that the new and old energy losses are identical

and both reduce to the MM result in this limit.
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In the strong damping limit ν ≃ γ2

ω‡2 and limν→∞ ν2M4 (ν) =
4

35π
so that:

lim
γ→∞

δ =
432

35
βV ‡. (4.20)

The energy loss does not diverge, however it is a factor of 16 larger than the energy loss found

in the ”standard” PGH theory. More generally, for Ohmic friction the parameter 1 ≤ ν ≤ ∞

so that for any value of the friction δ ≥ δPGH .

In Fig. 1 we plot the three energy losses as a function of the reduced friction (γ/ω‡) with

βV ‡ = 1 (the magnitude of the barrier is trivial for this purpose, since all three energy losses

scale linearly with the reduced barrier height).

One notes that while the MM energy loss goes linearly to infinity, the new energy loss is

practically identical to the MM energy loss for γ/ω‡ ≤ 1, diverging from it only for higher

values, but increasing monotonically with the friction strength. This good agreement implies

that the two theories will give results which are quite close to each other for any value of the

friction. This is shown in Fig. 2 where we plot the ratio of the depopulation factor obtained

with the new theory to the MM result as a function of the friction strength, for βV ‡ = 4

and 2.

The PGH energy loss is always lower than the other two and has an un-physical maximum

which reflects the competition between the increasing coupling to the bath, which increases

the energy loss and the lowering of the effective barrier height for the zero-th order motion in

the PGH formalism. As noted, in the new theory, the barrier height remains unchanged so

that the energy loss always increases with increasing friction and the un-physical maximum

is removed.

It is a matter of some algebra, noting that (see Eq. 3.16)

X (t) =
2 cosh5

(
λ‡

2
t
)
+ 5 cosh3

(
λ‡

2
t
)
− 15 cosh

(
λ‡

2
t
)
+ 15

(
λ‡

2
t
)
sinh

(
λ‡

2
t
)

4λ‡Mω‡2q20 sinh
(

λ‡

2
t
) (4.21)
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Figure 1: (color online) The reduced energy loss δ is shown as a function of the reduced
friction (γ/ω‡) for ”standard” PGH theory (blue, dashed line), the new PGH theory (green,
solid line) and MM theory (red, straight dotted line). Note that the NEW PGH estimate
agree with the MM estimate for δ ≤ 10 and increases monotonically, while the PGH estimate
starts decreasing when γ/ω‡ ≃ 1.
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Figure 2: The ratio between the depopulation factor obtained from the new PGH theory
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estimates are very close to each other over the whole friction range.
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to find that the finite barrier correction parameter (Eq. 3.15) is

µ =
1

δ

(
−5ν

(
6ν5 − 9ν3 − 3ν2 + 2ν + 4

)
+ 60 (ν − 1) ν5

(
ν2 − 1

) ∞∑
k=0

1

(ν + k)3

)
. (4.22)

In the underdamped regime, one readily finds that

lim
γ→0

µ =
25

36βV ‡ (4.23)

implying that especially for low barriers, one cannot neglect the finite barrier corrections.

Conversely, in the strong damping limit

lim
γ→∞

µ =
175

216βV ‡ . (4.24)

The ratio of the strong to weak friction limit is 7/6 ≃ 1. The correction parameter is thus

almost a constant over the whole friction range.

In Fig. 3 we consider the quality of the improved theory. We compare the theoretical

transmission factor without finite barrier corrections, defined as

κ0 =
Γ0

ΓTST

= κ0SDΥ
0 (4.25)

where the spatial diffusion factor is the Kramers-Grote-Hynes expression (Eq. 2.16) and

Υ0 is the depopulation factor without finite barrier corrections, as given in Eq. 2.18 with

numerically exact simulations (solid circles). The numerics were carried out as described

in Ref.11 and are highly accurate (error of 1 · 10−6). We checked that the numerically

computed results are independent of the initial condition chosen. They are compared with

three different theories. The solid line shows the result based on the improved formulation of

PGH theory for the energy loss (Eq. 4.13), the dashed line is based on the ”standard” PGH

theory where the energy loss is given by Eq. 4.17 and the dotted line is the result of MM
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Figure 3: (color online) Transmission factors and relative errors without finite barrier correc-
tions for the standard PGH theory (blue, dashed line), new PGH theory (green, solid line)
and MM theory (red, dotted line), for βV ‡ = 2 (upper panels) and 4 (lower panels). The
green asterisks denote the numerically exact transmission factors. Note that MM theory
and the new PGH theory are almost identical and more accurate than the ”standard” PGH
theory.
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theory (energy loss given by Eq. 4.18). The left panels show the results for the transmission

factor for βV ‡ = 2 (upper panel) and βV ‡ = 4 (lower panel) as functions of the reduced

friction coefficient. The right panels show the relative errors of the various estimates, defined

as

∆κ0i =
κ0i − κex
κex

, i =MM,PGH,NEW. (4.26)

In all cases, MM and the new PGH theory are very close to each other, as already noted

above, their respective energy losses are very similar in the range of friction for which the

depopulation factor is significantly different from unity. In comparison, the ”standard”

PGH theory is much less accurate, especially in the moderate to strong friction range, this

is due to the lack of monotonicity of the PGH energy loss as a function of the damping,

which leads to a depopulation factor in the strong damping limit which is 0.743, 0.539 for

βV ‡ = 4, 2 respectively, while for the new PGH, the depopulation factor in this limit tends

to 0.9999993, 0.9995 respectively. The MM depopulation factor tends to unity in both cases,

since the MM energy loss diverges in the strong friction limit.

These results already imply that the modified turnover theory is superior to the ”stan-

dard” PGH theory, in the moderate to strong damping regimes. The relative errors are

however, not negligible, already for a reduced barrier height of 4. As noted in our previous

computations, the introduction of finite barrier corrections improves the estimates. How-

ever, a word of caution, the finite barrier corrected PGH results shown in Fig. 4 are based

on ad-hoc corrected theory, both for the MM result as well as the PGH results, where we

imposed the condition that the PGH energy loss function does not go down in the strong

friction limit.

One of the central improvements of the modified PGH theory presented in this paper is

that indeed the energy loss is a monotonically increasing function of the friction strength,

and the resulting theory has no ad-hoc correction to it. Formally, it is thus also superior

to the MM finite barrier corrected theory which also employs an ad-hoc correction term to

extend it into the moderate to strong damping regime.
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Figure 4: (color online) Finite barrier corrected transmission factors and relative errors
for the new PGH theory for βV ‡ = 4. The solid, green line denotes the results when
including all finite barrier corrections, including the EXP term, the dotted blue line shows the
results including all finite barrier corrections, excluding the EXP correction to the transition
probability kernel and the asterisks are the numerically exact results. For this barrier height
the EXP correction is negligible, and the finite barrier corrected result is quite accurate over
the whole friction range.

In Fig. 4 we consider the finite barrier corrected theory for βV ‡ = 4. The left panel

presents a comparison between the numerically exact results and the finite barrier corrected

transmission factor

κ = κSDΥ

where κSD for the cubic potential was defined in Eq. 2.21 and its explicit form for the Ohmic

friction is given in Eq. 4.12 of Ref.8 The finite barrier corrected depopulation factor (Υ) was

defined in Eq. 2.24. The numerically exact results are the solid circles, the solid line shows

the theoretical results obtained using the finite barrier correction estimate (2.24) with the

finite barrier corrected kernel as given in Eq. 3.21. The dotted line, is the same but replacing

1
2
erfc

(
−βV‡−i2δτ

2
√
δ

)
with unity in Eq. 3.21, that is ignoring the finite barrier correction to the

kernel. The relative error is shown on the right panel. It is remarkable, that even though

the reduced barrier is quite low, the error in the theoretical estimate is less than 8% and

this only in the very weak damping regime. Secondly, there is hardly any difference between
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the results based on the finite barrier corrected kernel (solid line) and the kernel without the

correction (dotted line). As already noted, for βV ‡ = 4 this correction is very close to unity,

since exp (−4) ≃ 0.018.

The same comparison is presented in Fig. 5 but here, for βV ‡ = 2. The numerical results

are given in Table 1. First one notes the relatively large error in the estimate for the rate

Table 1: Numerical escape rates for a cubic potential with two reduced barrier
heights βV ‡ = 2, 4. The values of ΓTST for the respective reduced barrier heights
are 7.2961× 10−2 and 1.0198× 10−2.

γ/ω‡ βV ‡ = 2 βV ‡ = 4 γ/ω‡ βV ‡ = 2 βV ‡ = 4
0.001 1.1380e-03 2.1061e-04 0.133352 0.052664 7.8109e-03
0.001333521 1.4997e-03 2.7579e-04 0.17783 0.057628 7.8109e-03
0.001778279 1.9674e-03 3.6091e-04 0.237137 0.061017 8.5338e-03
0.002371373 2.5785e-03 4.7221e-04 0.31623 0.062466 8.5246e-03
0.003162277 3.3586e-03 6.1463e-04 0.421697 0.061958 8.2618e-03
0.004216965 4.3710e-03 7.9286e-04 0.56234 0.058823 7.7798e-03
0.005623413 5.6508e-03 1.0193e-03 0.749894 0.053887 7.1368e-03
0.007498942 7.3090e-03 1.3019e-03 1.0 0.047874 6.3485e-03
0.01 9.3355e-03 1.6530e-03 1.333521 0.040992 5.4333e-03
0.013335 0.011928 2.0809e-03 1.7783 0.033965 4.5212e-03
0.017783 0.015015 2.6038e-03 2.371374 0.027312 3.6598e-03
0.023714 0.018805 3.2128e-03 3.1623 0.021493 2.8887e-03
0.031623 0.023303 3.9193e-03 4.216965 0.016671 2.2396e-03
0.042170 0.028422 4.7029e-03 5.0 0.014229 1.9105e-03
0.056234 0.034117 5.5358e-03 6.0 0.011967 1.6115e-03
0.074989 0.040379 6.3651e-03 7.0 0.010303 1.3906e-03
0.1 0.046683 7.1873e-03 8.0 9.0473e-03 1.2209e-03

in the underdamped regime. In this limit, the term 1
2
erfc

(
−βV‡−i2δτ

2
√
δ

)
may be ignored, for

example, at γ/ω‡ = 10−3, βV ‡/
(
2
√
δ
)
≃ 8.3 so that the correction is exponentially small.

Similarly Υ0
(
γ/ω‡ = 10−3

)
= 0.0130 which is already 17% smaller than the numerically

exact result for the transmission factor which is 0.0156. Incorporating the finite barrier

correction as in Eq. 2.24 leads to a much worse estimate - 0.0075 and a relative underestimate

of the rate by 52%. In this limit, the leading order finite barrier correction is insufficient.

The supposedly small expansion parameter µ
(
γ/ω‡ = 10−3

)
= 0.35, which is of the order

of unity. This quantitative failure in the underdamped limit and low barriers has already
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Figure 5: (color online) Finite barrier corrected transmission factors and relative errors for
the new PGH theory for βV ‡ = 2. The notation is as in Fig. 4. Here, the EXP correction
improves the agreement between theory and experiment especially in the turnover region.

been documented previously, as may be seen for example by inspection of Fig. 1 of Ref.21

The more interesting result is that in the turnover region, the theory with full finite barrier

corrections is quite accurate. For γ/ω‡ ≥ 0.25 the error is less than 10%. Inclusion of the

finite barrier correction to the kernel as in Eq. 3.21 helps, it significantly reduces the error

in the estimate in this region. The finite barrier corrected theory predicts the location of the

maximum in the transmission coefficient reasonably well.

Discussion

In this paper we have introduced a modified formulation for the PGH version of Kramers’

turnover theory. Theoretical analysis as well as numerical experiment show that this theory

is superior to the ”standard” PGH formalism and the MM theory for a number of reasons.

Compared to the ”standard” PGH, the energy loss in the new formulation is a monotonically

increasing function of the friction in the Ohmic case. There is no need to introduce an ad-

hoc correction as done for example in Ref.11 Secondly, in contrast to the ”standard” PGH

theory, the present formulation can also be applied to surface diffusion, since the zero-th
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order motion along the unstable mode keeps the topological structure of the original system

potential. Thirdly, the theory is superior to MM theory, especially when introducing finite

barrier corrections. In the MM theory there is an essential breakdown of these corrections

when the reduced friction is of the order of unity. This is removed in Mel’nikov’s formulation

by introducing an ad-hoc interpolation.9 In our present formulation, this is not needed, the

theory is well defined for any value of the friction coefficient, and moreover quite accurate,

even for barriers as low as βV ‡ = 4.

We have also shown how one may introduce a finite barrier correction to the probability

kernel which partially corrects for the fact that when the barrier is low, one must consider

that the final energy cannot go to −∞. This correction is of special importance in the

turnover region. We showed that for βV ‡ = 2 the theory is qualitatively correct and is

rather accurate in the turnover region. This supports the observations of Refs.12,13 where

they found a Kramers like turnover in the rate for the isomerization of LiCN in an Ar solvent

even though the reduced barrier was quite low.

The inexorable conclusion is that the present version of PGH theory is the version to be

used. However, this does not yet end all the challenges presented by the Kramers’ turnover

problem. PGH theory was invented to treat memory friction. All the expressions derived

in this paper are expressed in terms of the time dependent friction and do not introduce

explicitly the assumption that the friction is Ohmic. Yet, one must be careful. Consider the

case of exponential memory friction

γ (t) =
γ

τ
exp

(
− t

τ

)
(5.1)

where γ is the friction coefficient, in the sense that when the memory time τ → 0 the time

dependent friction γ (t) becomes Ohmic friction with friction coefficient γ. Furthermore

consider this same form, but keeping the ratio between the friction coefficient and the memory

27



time constant

γ

τ
= αω‡2 (5.2)

as discussed extensively in Refs.22,23 Keeping the ratio parameter α fixed and less than unity

one finds that in the strong friction long memory time limit, that is letting α stay fixed but

allowing γ → ∞ one finds that u200 → 1. This of course implies that u21 = 1 − u200 becomes

small and as shown in Ref.23 in this limit one may successfully apply the ”standard” PGH

theory. However, in this limit λ‡2

ω‡2 → 1 − α so that u00 − λ‡

ω‡ → 1 −
√
1− α and this is

not necessarily small. But the turnover theory formulated in this paper, was predicated on

the assumption that u1∆σ (see Eq. 3.5) is small. In other words, in this limit, the present

formulation of PGH theory is not valid, and it fails as badly as MM theory.23 It thus remains

a challenge to formulate a theory which is valid even in this strong friction long memory

time limit. From a practical point of view though, for ”typical” memory friction, one does

not reach this high friction long memory time limit, and the present modified PGH theory

should provide a good estimate for the activated rate of escape.

Further development of the present turnover theory would be to follow the development

of Ref.14 and include in the present reformulated theory also the quantum effects of quantum

tunneling and quantum reflection as well as low temperature effects due to the quantization

of the bath modes.
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