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Abstract

Internal conversion is an inherently quantum mechanical process. To date, ”on the fly” com-

putation of internal conversion rates is limited to harmonic approximations, which would seem to

be especially unsuitable, given that the typical transition to the ground electronic state occurs at

energies which are far from the harmonic limit. It is thus of interest to study the applicability of

the SemiClassial Initial Value Representation (SCIVR) approach which is in principle amenable to

”on the fly” studies even with ”many” degrees of freedom. In this paper we study the applicability

of the Herman-Kluk (HK) SCIVR to a model system with two coupled and anharmonic degrees of

freedom. We find that (a) The HK SCIVR is a good approximation to the exact quantum dynam-

ics; (b) Computation of the first order correction to the HK-SCIVR approximation corroborates

the accuracy; (c) By studying a large parameter range, we find that the harmonic approximation is

mostly unsatisfactory; (d) For the specific model used, the coupling between the modes was found

to be relatively unimportant. These results imply that the HK-SCIVR methodology is a good

candidate for ”on the fly” studies of internal conversion processes of ”large” molecules.
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I. INTRODUCTION

The theory of nonradiative decay of excited vibronic states of molecules has a long history.

Almost fifty years ago, Robinson and Frosch [1, 2] and some years later, Lin and Bersohn

[3, 4] set the framework in their seminal papers. A summary of the historical development

of the theory may be found in a recent review by Lin et al [5]. More recently, Peng et al

[6] have adapted the Green’s function method for the computation of internal conversion

rates. This has led to the computation of internal conversion rates of large molecules,

using ab-initio force fields for both the electronically excited and ground states [6–8]. These

studies are limited though to harmonic models for the vibrations in both the ground and

excited electronic state [9]. At best, anharmonicity is dealt with using perturbation theory

about the harmonic limit as described for example in Refs. [10–12]. Especially for Internal

Conversion (IC), where the transition occurs from an excited electronic state to high energy

vibrations in the ground electronic state, one may expect that the harmonic approximation

for the dynamics and its extensions on the ground state potential may fail since the density

of vibrational states on the ground electronic state would be typically much higher than

predicted from a harmonic model.

An important advantage of the harmonic theory is that one may use ab-initio meth-

ods for the force fields and thus estimate from first principles the IC rates [7, 8, 11, 12].

Numerically exact computations for the dynamics of systems with up to 100 coupled de-

grees of freedom are possible today, using the MultiConfiguration Time Dependent Hartree

(MCTDH) method [13]. However, such computations necessitate a global description of the

potential energy surface and so are still difficult to implement from first principles. A com-

promise approach would be to use the SemiClassial Initial Value Representation (SCIVR)

approach [14]. SCIVR is known to treat quantum effects such as zero point energy, superpo-

sition and weak to moderate tunneling rather well. Especially the Herman-Kluk (HK) frozen

Gaussian SCIVR propagator [15] is amenable to ab-initio computations in the sense that it

relies on the dynamics of the bare potential and needs as input local force field information

only. It is thus of interest to test the HK SCIVR approximation for the computation of

internal conversion rates, under a variety of conditions. If one finds that the approximation

is ”good” then one may hope to implement it ”on the fly” and thus provide a more accurate

description of internal conversion.

2



The central objectives of this paper are (a) to test the applicability of the HK SCIVR

approximation to IC by comparing it with numerically exact quantum results; (b) to explore

the relevant parameter space which is expected to affect the IC rates and compare the correct

anharmonic IC transition probabilities with those obtained with a harmonic approximation

of the ground state potential. We use a model system with 2 degrees of freedom for which

it is not difficult to compute the numerically exact quantum results. It is also of interest

to study some qualitative effects on the internal conversion process. For example, Henke

et al [16] found that increasing the energy of the initial vibrational state in the excited

electronic state will increase the IC rate. The influence of the initial vibronic state has

been investigated experimentally by Frisoli et al [17] for the formaldehyde molecule. With

this in mind, we have studied in some detail how variations in the force field as well as the

preparation of the system in the excited electronic state affect the IC rate and how well this

is approximated by the HK SCIVR method.

In Sec. II we review the formalism needed for the computation of the radiationless decay

rate as well as the relevant SCIVR formulae needed for implementation. Computations

on a model system with two degrees of freedom, used in the past to model water and

carbon dioxide are presented in Section III. Comparison of the HK SCIVR method with

numerically exact quantum results is encouraging, as the two are almost identical. A first

order perturbation theory correction of the HK SCIVR [18, 19] is found to be very small.

We end with some concluding remarks in Sec. IV.

II. FORMALISM

A. Theory of radiationless decay

We consider the decay of an excited vibronic state, via nonadiabatic coupling to the

ground electronic state. The potentials involved are drawn schematically in Fig. 1. The ex-

cited state potential is shifted in energy (∆E) relative to the ground state and its equilibrium

position is shifted by ∆q relative to the ground state minimum.

The radiationless decay from an excited vibronic state to the ground electronic state is
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FIG. 1: Adiabatic surfaces describing the ground and excited electronic states in one dimension.

∆q is the spatial shift between the surfaces, it is defined as positive if the shift is towards the

dissociative side of the ground state and negative if it is towards the repulsive side. ∆E is the

energy gap between the bottom of the ground and excited electronic states.

given by Fermi’s golden rule [4, 6]:

Wi→f =
2π

~

∑

ν

∑

ν′

Pν′ |〈φν|HBO|ψν′〉|2δ(Eν − Eν′) (2.1)

where Pν′ is the initial probability of the molecule to be in the ν ′ energy level of the excited

electronic state whose eigenfunction is ψν′ . The final state ν on the ground electronic surface

has the energy Eν and eigenfunction φν . Energy conservation is reflected through the Dirac

”delta” function δ(Eν − Eν′). HBO is the Born-Oppenheimer coupling operator due to the

breakdown of the adiabatic approximation and is expressed by a sum of nuclear momenta

operating on the nuclear and electronic wave functions as follows [4, 6, 10, 20]

HBO|ψχ〉 =
∑

l

1

ml

(
−i~ ∂

∂ql
|ψ〉

)(
−i~ ∂

∂ql
|χ〉

)
(2.2)

where the sum is over all degrees of freedom, and |ψ〉 and |χ〉 are the nuclear and the

electronic wave functions respectively.

The central thrust of this paper is to study the dynamics on the ground electronic state

potential. We assume that the electronic matrix element can be obtained from ab-initio

computations and so will henceforth treat it as a constant Cl ≡ 〈χ|
(
−i~ ∂

∂ql

)
|χ〉 which has

4



the dimensions of momentum. The nonadiabatic coupling operator may then be written as:

HBO =
∑

l

Cl

ml

(
−i~ ∂

∂ql

)
(2.3)

and it now operates only on the nuclear wavefunction. Assuming that the initial state is

specified with unit probability and energy E, allows to omit the sum on ν ′ so that after

using Eq. (2.3) we obtain:

Wi→f = 2π~

∑

l

(
Cl

ml

)2 ∑

ν

|〈φν|∂ψ/∂ql〉|2δ(Eν − E) (2.4)

where E is the energy of the initial excited state, represented by the wavefunction ψ.

To further simplify, we specify our model Hamiltonian which is based on a small molecule

such as H2O, where the two outer atoms are equal [21, 22]. The ground electronic state

nuclear Hamiltonian may be described by two degrees of freedom which are coupled through

a momentum term, while the bond potentials are Morse potentials:

Hg =
p2

1

2m1
+

p2
2

2m2
+
p1p2

M
+D1[1 − exp(−α1q1)]

2 +D2[1 − exp(−α2q2)]
2 (2.5)

Typically, in the excited electronic state, the system is prepared at low energies where a

harmonic approximation for the motion is reasonable. The nuclear Hamiltonian for the

excited electronic state is thus approximated as:

He =
p2

1

2m1

+
p2

2

2m2

+
1

2
m1ω

2
1(q1 − ∆q1)

2 +
1

2
m2ω

2
2(q2 − ∆q2)

2 + ∆E (2.6)

where ω1 and ω2 are the harmonic frequencies of the excited energy surface, ∆q1 and ∆q2

are the coordinate shifts between the excited and ground electronic state surfaces, and

∆E is the energy gap (see Fig. 1). This model is symmetric with respect to the middle

atom, so that the masses are equal m = m1 = m2. We may therefore also assume that

the nonadiabatic coupling constants are equal C = C1 = C2. This allows us to define a

dimensionless transition probability as Pi→f = ~mWi→f/C
2 obtaining:

Pi→f = 2π~
2
∑

l

1

ml

∑

ν

|〈φν|∂ψ/∂ql〉|2δ(Eν −E). (2.7)
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In principle, this transition probability is discrete since the initial energy in the excited

system takes on only discrete values. Only if there exists a state on the ground potential

surface whose energy Eν = E will a transition be possible. However, when the density of

states is high, we practically measure the average decay into a continuum of states. Let

us define σ(E) as the mean interval between successive vibrational states in the ground

electronic state at the energy E (for further details see the Appendix). The mean interval is

inversely proportional to the density of states and so is typically larger at low energies and

decreases as one moves up the vibrational ladder of states. The transition probability may

then be coarse grained by ”smearing” the Dirac ”delta” function with a Gaussian of width

σ(E):

δ(Eν − E) ≃ 1√
2πσ

e−
(Eν−E)2

2σ2 =
1

2π~

∫
∞

−∞

dt e−
i
~
(Eν−E)te−

t2σ2

2~2 (2.8)

where the dependence of σ on E has been omitted for the sake of brevity. Substituting

Eq. (2.8) into Eq. (2.4) and using the definition of the propagator for the evolution on the

ground electronic state we readily obtain that the expression for the transition probability

is:

Pi→f = ~

∑

l

1

ml

∫
∞

−∞

dt e
i
~

Ete−
t2σ2

2~2 〈∂ψ/∂ql|e−
i
~
Hgt|∂ψ/∂ql〉 (2.9)

We are interested in computing the transition probability as a function of the energy gap

∆E and the initial vibrational state in the excited electronic state. Denoting the initial

wavepacket associated with the n,m eigenvalue of He (with n,m referring to coordinates 1

and 2 respectively) as ψ ≡ ψnm, the energy relative to the bottom of the excited surface (see

Figure 1) is ~ω1(n+ 1/2) + ~ω2(m+ 1/2) so that the energy E in (2.9), is

E = ∆E + ~ω1(n + 1/2) + ~ω2(m+ 1/2). (2.10)

Defining the time dependent overlap

ρnm(t) ≡ ~

∑

l

1

ml
〈∂ψnm/∂ql|e−

i
~
Hgt|∂ψnm/∂ql〉, (2.11)

noting that the mean energy interval function σ(E) is a slowly varying function of the
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energy so that

σ(E) = σ(∆E + ~ω1(n + 1/2) + ~ω2(m+ 1/2)) ≡ σmn, (2.12)

we finally have that the transition probability is a Fourier transform of the overlap function:

Pn,m→f =

∫
∞

−∞

dt exp

[
i

~
(∆E + ~ω1(n+ 1/2) + ~ω2(m+ 1/2))t

]
exp

(
−σ

2
mnt

2

2~2

)
ρnm(t).

(2.13)

We remark that in the model system with two degrees of freedom studied in this paper one

cannot distinguish clearly between the initial decay of the wavepacket and fractional revivals

of it. Therefore, the relevant time scale during which the integrand takes on meaningful

values is ± ~

σmn
, so that the higher the density of states on the ground electronic surface,

the longer one needs to determine the quantum dynamics. This may present a challenge

to the accuracy of the semiclassical approximation described below. However, when the

number of degrees of freedom increases significantly, one expects only the initial decay to be

meaningful, so that as the density of states increases, the integration time should decrease

making it easier to implement a semiclassical approach.

B. The semiclassical Herman-Kluk propagator

The Herman Kluk SCIVR propagator for a system with N degrees of freedom is [15]

K̂0(t) =

∫
∞

−∞

dpdq

(2π~)N
R(p,q, t) exp

(
i

~
S(p,q, t)

)
|g(p,q, t)〉〈g(p,q, 0)| (2.14)

where p and q are the N dimensional momentum and coordinate variables respectively. The

Herman Kluk prefactor is defined as:

R(p,q, t) =√
det

[
1

2

(
Γ1/2MqqΓ−1/2 + Γ−1/2MppΓ1/2 − i~Γ1/2MqpΓ1/2 +

i

~
Γ−1/2MpqΓ−1/2

)]
.

(2.15)
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The monodromy matrices are denoted

Mab ≡
∂at(p,q)

∂b
(2.16)

where a and b may be either p or q, and Γ is a constant in time N × N matrix (usually

taken to be diagonal), establishing the width of the coherent states - see Eq. (2.18). Each

initial phase space point p,q is evolved classically reaching the point pt,qt at time t. The

classical action along the trajectory is

S(p,q, t) =

∫ t

0

dt′ (p′

tq̇
′

t −H(p,q)) (2.17)

and the coherent state matrix element |g〉 in the coordinate representation is given by

〈x|g(p,q, t)〉 =

(
det(Γ)

πN

)1/4

exp

[
−1

2
(qt − x)TΓ(qt − x) +

i

~
pt · (x − qt)

]
. (2.18)

The HK propagator as defined in Eq. (2.14) may be considered to be a zero-th order

approximation to the exact quantum propagator exp
(
− i

~
Ht

)
. As has been shown in Refs.

[18, 19] higher order corrections to the propagator may be calculated with the aid of the

recursion relation:

K̂j+1(t) =
i

~

∫ t

0

dt′K̂j(t− t′)Ĉ(t′) (2.19)

where the correction operator Ĉ(t) is given by

Ĉ(t) =

∫
∞

−∞

dpdq

(2π~)N
R(p,q, t) exp

(
i

~
S(p,q, t)

)
∆̂V (q̂,p,q, t)|g(p,q, t)〉〈g(p,q, 0)| (2.20)

and ∆̂V (q̂,p,q, t) is the potential difference operator, which has different forms for differ-

ent semiclassical representations [23]. For the HK representation the potential difference

operator is

∆̂V (q̂,p,q, t) = V (qt)+∇V (qt)·(q̂−qt)−
~

2

2
Tr(Γ)+

~
2

2
(q̂−qt)

TΓ2(q̂−qt)−V (q̂)+i~
Ṙ(p,q, t)

R(p,q, t)
.

(2.21)
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III. NUMERICAL RESULTS

A. The quality of the HK SCIVR approximation for the IC transition probability

For all the calculations we employed the potential parameters used previously for H2O as

given in Refs. [21, 22]. The effective masses m1 and m2 are 16
17

of the proton mass, however

the coupling mass M is − 16
2.5

of the proton mass, ten times smaller than the coupling mass

used in Ref. [21] so as to increase the coupling between the two anharmonic modes. The

Morse parameters α1 and α2 are 2.175 × 108 cm−1 and the dissociation energies D ≡ D1 =

D2 = 5.52 eV. This results in uncoupled Morse frequencies of ωg1 = ωg2 = α
√

2D/m =

7.2916×1014 sec−1 (or 3868 cm−1) each and 23 bound states per dimension. The frequencies

of the excited electronic state described in (2.6) are typically lower than those in the ground

state so that we used for ω1 and ω2 the value 1.4583 × 1014 sec−1 (or 774 cm−1).

As mentioned in the previous section and as detailed in the Appendix, σ(E) is defined as

the mean energy interval between adjacent states. To average over a few states in a given

energy interval one needs to use some multiple of it. We used for all the calculations 7 times

the value of σ(E) as defined by Eqs. (A.2) and (A.3).

The IC transition probability from the ground vibrational state ψ00 of the excited elec-

tronic state was computed as a function of the normalized energy gap ∆E/D for a positive

shift ∆q = 0.7/α in both degrees of freedom, using three different estimates: exact quantum

diagonalization, zeroth order HK SCIVR for the quantum propagator as given by Eq. (2.14)

and also a first order correction to the HK SCIVR as obtained from Eq. (2.19). For calcu-

lating the HK SCIVR we used a diagonal Γ matrix. We obtained best results by setting

Γ11 = Γ22 = mωg/~, hence we used those values for our calculations.

We performed the integrals using the Monte Carlo method. 5 × 108 trajectories were

used for the zeroth order integral defined in Eq. (2.14) obtaining an accuracy of 10−5 for

the calculation of the IC transition probability. For the first order calculation defined by

Eq. (2.19) many more trajectories were needed to obtain a similar accuracy. We used for

the first order computations 2.5 × 1010 trajectories obtaining an accuracy of 5 × 10−6. We

do remark, that in any practical ”on the fly” computation, one does not need such a high

accuracy. Typically an error of 1 percent would be acceptable leading to sample sizes of the

order of 103 which are amenable to ”on the fly” computations.
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FIG. 2: (color online) Internal conversion transition probability vs. normalized energy gap ∆E/D

for the decay of the ground vibrational state ψ00 of the excited electronic state. The shift between

the minima of the ground and excited state potentials is taken to be ∆q = 0.7/α in both dimensions.

The comparison shown is between the exact quantum result, the 0’th order HK and the 1st order

HK.

We evolved the overlap function defined in Eq. (2.11) up to a time of about 3 cycles of

the basic frequency ωg. As explained in section II.A, only a small part of this interval is

needed when the transition energy is low (close to the bottom of the ground electronic state

surface) but the full range is needed when the transition energy is high.

Results are shown in Figure 2 for a positive coordinate shift and the ground vibrational

state in the excited electronic state. We find that the different estimates for the probabilities

are hardly distinguishable. The semiclassical result is an excellent approximation to the

exact quantum result.

To provide some more insight into the quality of the HK SCIVR dynamics, we plot in

Figure 3 the differences between the numerically exact quantum results and those obtained

with the zero-th order HK SCIVR method and the sum of the zero-th and first order HK

SCIVR methods, shown in Figure 2. We note that the differences between the results are 2

to 3 orders of magnitude smaller than the results themselves. Also, the difference between

the quantum and the first order HK results is smaller by 20% as compared to the difference

between the quantum and the zeroth order HK. The perturbation theory thus corroborates

that the zero-th order approximation is rather accurate. The same type of accuracy was

also found for different shift parameter choices, and different initial conditions. Henceforth,

we shall show only the result obtained using the zero-th order HK SCIVR methodology.
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FIG. 3: (color online) Differences between the numerically exact quantum IC transition probability

and the approximate probabilities as obtained using the HK 0th order and 0th plus 1st order HK

SCIVR approximations.

B. Anharmonic effects

As noted in the Introduction, one may readily obtain analytic expressions for the IC

transmission probability when the ground electronic state Hamiltonian is harmonic. It is

thus of interest to probe how accurate the harmonic approximation really is. We will use

in this section different shifts of the excited electronic state with respect to the ground

electronic state, as shown in Fig. 4.

In panel (a) of Fig. 5 we plot the IC transition probability as a function of the (reduced)

displacement energy ∆E/D, for different initial vibrational states in the excited electronic

state. The two potential curves are not shifted (∆q = 0), as shown in panel (a) of Fig. 4.

It is note worthy that the transition probability maximizes when the energy shift is roughly

half of the dissociation energy and then rapidly falls off. The same probabilities are plotted

in panel (b) of the Figure but for the harmonic approximation of the potential, based on

a harmonic expansion of the ground electronic state potential about its minimum. For low

energy displacements, as might have been expected, the harmonic probabilities are very

similar to the quantum. However, as the energy displacement increases, the anharmonicity

kicks in. The harmonic probabilities remain relatively large even when the displacement

energy is larger than the dissociation energy of the ground electronic state potential.

Displacing the two curves relative to each other creates an even more pronounced effect.

In Fig. 6 we compare the IC transmission probability when the excited state potential

minimum is displaced (∆q = 0.7/α for both degrees of freedom) toward the dissociative
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FIG. 4: (color online) Contour plot of the potentials. The ground electronic state contours are

displayed as thick (blue) lines and the excited electronic state contours are displayed as thin

(magenta) lines. Panel (a) shows a non shifted excited electronic state (∆q = 0), panel (b) shows

the excited electronic state shifted toward the dissociation side (positive shift, (∆q = 0.7/α)) in

both dimensions, while panel (c) shows the excited electronic state shifted toward the repulsive

side (negative shift, (∆q = −0.52/α))) in both dimensions.
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FIG. 5: (color online) The dependence of the IC transition probability on the normalized energy

displacement ∆E/D for zero displacement (∆q = 0) and different initial excited states n,m. Panel

(a) shows the HK SCIVR based results for the full anharmonic Hamiltonian, panel (b) shows the

same for the harmonic approximation of the ground electronic state Hamiltonian.
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FIG. 6: (color online) The dependence of the IC transition probability on the normalized energy

displacement ∆E/D for a fixed positive displacement of 0.7/α and different initial excited states

n,m. Panel (a) shows the HK SCIVR based results for the full anharmonic Hamiltonian, panel

(b) shows the same for the harmonic approximation of the ground electronic state Hamiltonian.

side of the ground electronic state potential, as shown in panel (b) of Fig. 4. Panel (a) of

Fig. 6 shows the HK SCIVR based results for the anharmonic ground state potential, while

panel (b) shows the results based on the harmonic approximation to the ground electronic

state Hamiltonian. One notes that in the presence of the anharmonicity, the transition

probabilities for the different initial states maximize at shift energies which are at least half

of the dissociation energy of the ground electronic state and then decay to almost zero for

shift energies that are much higher than the dissociation energy. In contrast, the harmonic

results remain rather constant throughout, with peak values that are much smaller, and

they do not decay when the shift energy grows substantially beyond the dissociation energy.

We remark that when the two curves are displaced in configuration space, that even

for low energy displacements the harmonic approximation fails, resulting in significantly

lower IC transmission probabilities. This is due to the fact that the asymmetry in the

potential causes the anharmonic wavefunction to be displaced away from the equilibrium

point hence leading to a larger overlap with the excited state wavefunction. The opposite

effect is observed when the configurational displacement is towards the repulsive side, as

may be seen in Fig. 7. Here we compare the IC transmission probability, when the excited

state potential minimum is displaced (∆q = −0.52/α for both degrees of freedom) toward

the repulsive side of the ground electronic state potential, as shown in panel (c) of Fig. 4.

Panel (a) of Fig. 7 shows the HK SCIVR based results for the anharmonic ground state

potential, while panel (b) shows the results based on the harmonic approximation. Here,
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FIG. 7: (color online) The dependence of the IC transition probability on the normalized energy

displacement ∆E/D for a fixed negative displacement of −0.52/α and different initial excited states

n,m. Panel (a) shows the HK SCIVR based results for the full anharmonic Hamiltonian, panel

(b) shows the same for the harmonic approximation of the ground electronic state Hamiltonian.

for low shift energies, the harmonic probability is somewhat higher, as explained above. At

high displacement energies, the harmonic approximation again does not decay and so is a

poor approximation to the anharmonic decay probabilities.

Perhaps the most striking feature in the three cases shown in Figs. 5-7 is that at energy

shifts above the dissociation energy, the transmission probability decays, but the harmonic

approximation does not. For the harmonic approximation of the ground state Hamiltonian

there is no dissociative continuum. When the initial state mainly overlaps with the con-

tinuum oscillatory states, as especially seen in Fig. 6 then the overlap is small and the

transition probability is small. If however one approximates the ground state Hamiltonian

as a harmonic system, then one overlaps with localized bound states, and the effect of the

shift energy is much weaker. Overall, especially at shift energies which are greater than half

of the dissociation energy, the harmonic approximation fails and gives results which are typ-

ically much larger than those found with the full anharmonicity. Although the anharmonic

density of states is higher than the harmonic, the central effect seems to be that at high

shift energies, the harmonic wave functions remain relatively localized so that the overlaps

are larger than those found for the full anharmonic case.
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FIG. 8: (color online) Transition probabilities from different excited states (n,m), for a fixed energy

gap of 0.5D.

C. Initial state dependence of the transmission probability

Experimentally, it has been established [10, 16, 24, 25] that the IC transmission rate

increases as the energy of the initial state increases. Qualitatively, as the initial energy

increases, so does the density of states in the ground electronic state and so the overlap grows.

That this is indeed the case is shown in Fig. 8 where we plot the transmission probability for

a fixed value of the shift energy (chosen to be 0.5 of the dissociation energy) for positive, zero

and negative displacement of the two electronic curves. One notes, that indeed, irrespective

of the coordinate shift between the two electronic states, the IC transmission probability

increases with increasing initial state, reflecting the increase in the density of states of the

ground state vibrations.

D. Coupling effects

One way of overcoming the limitation to harmonic systems is by ignoring the coupling

between modes. It is easier to compute the internal conversion probability when the system

is separable. We find that increasing the displacement of the excited electronic toward

the dissociative side, increases the effect of coupling. Panel (a) of Fig. 9 shows the IC

transmission probability when the excited electronic state potential minimum is displaced

by ∆q = 0.7/α in both degrees of freedom, but without the coupling term in the ground

electronic state Hamiltonian, while panel (b) shows the differences between the uncoupled

results and the parallel coupled results from panel (a) of Fig. 6. Clearly, the IC transition
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FIG. 9: (color online) Panel (a) shows the HK SCIVR based results for the dependence of the

IC transition probability on the normalized energy displacement ∆E/D for positive displacement

(∆q = 0.7/α) and different initial excited states n,m, for the anharmonic uncoupled ground Hamil-

tonian. Panel (b) shows the differences between the coupled and the uncoupled results, all other

parameters being identical.

probability for the model Hamiltonian used in the present study is only weakly dependent

on the coupling between the modes.

IV. CONCLUDING REMARKS

We have shown that the internal conversion transition probability can be calculated

accurately with the HK SCIVR method. The first order correction to the semiclassical

approximation is small. The accuracy was also verified by comparing the SCIVR estimates

with the numerically exact quantum mechanical results. This is encouraging, as it would

justify the use of the HK SCIVR method for the study of internal conversion in larger

systems. Perhaps not less important is the observation that a harmonic approximation is

not very reliable, giving qualitatively incorrect results especially at energies in the vicinity

of the dissociation energy of the ground electronic state potential.

The results presented here are in qualitative agreement with experimental observations

[10, 16, 24, 25] on the dependence of IC rates on the initial excited state for formaldehyde.

As in the experiments, we find the general tendency of higher internal conversion transition

probability, for higher initial states of the excited electronic state.

These computations imply that the HK SCIVR method is a good candidate for imple-

mentation in ”on the fly” computation of IC rates for systems with many degrees of freedom.
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Perhaps the greatest challenge facing the HK SCIVR method is that the computation of the

prefactor depends on the computation of the Hessian matrix ”on the fly”. This can become

quite expensive. In this context we mention that there are available methods for simplifying

the computation, as discussed for example in Ref. [33].
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Appendix A: The coarse grained level spacing

In this appendix we describe how we evaluated the coarse grained energy dependent

level spacing function σ(E). The number of states up to an energy E between 0 and the

dissociation energy D is defined as:

N(E) = Tr[θ(E −Hg)]. (A.1)

For energies in the interval D < E < 2D there are bound and unbound states, hence N is

infinite for energies higher than the dissociation energy. By numerically diagonalizing the

ground state (anharmonic and coupled modes) Hamiltonian, we could get the (staircase like)

function N(E). We then fit the staircase function to a continuous function of the form:

Nan(E) =
1

2

[(
E

~ωg

)2

+
E

~ωg

]
− 0.01

(
E

~ωg

)3

+ 0.0032

(
E

~ωg

)4

. (A.2)

A comparison between the numerically exact staircase function and its continuous fit is

shown in Fig. 10.

The energy interval function is then by definition

σ(E) = dE/dN (A.3)

calculated from (A.2), for energies between 0 and D. For energies between D and 2D,

because of the mixing of bound and unbound states we used the value of σ(D). For com-

parisons with the harmonic approximation to the ground state potential we used only the
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FIG. 10: (color online) Two dimensional coupled Morse population plotted as a function of the

dimensionless energy E/D. We compare the fitted function as obtained from Eq. A.2 with the

numerically exact staircase function obtained by numerically diagonalizing the Hamiltonian of the

ground electronic state. The deviation of the fitted function from the exact function is less than

2% for E/D > 0.45

first 2 terms in (A.2).
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