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We outline fundamental coherent radiation processes from a charge particles beam: Spontaneous Superradiance

(SR), Stimulated Superradiance (ST-SR), and in the context of undulator radiation: Tapering-Enhanced Superra-

diance (TES) and Tapering-Enhanced Stimulated Superradiance Amplification (TESSA). Both single bunch and

periodic bunching (in phasor and spectral Fourier frequency formulations) are considered in a model of radiation

mode expansion.

I. INTRODUCTION

In the context of radiation emission from an electron beam,
Dicke’s superradiance (SR) [1] is the enhanced radiation emission
from a pre-bunched beam. Stimulated Superradiance (ST-SR) is
the further enhanced emission of the bunched beam in the pres-
ence of a phase-matched radiation wave. These coherent sponta-
neous emission processes of an electron bunch were analyzed for
synchrotron and undulator radiation in the framework of radiation
field mode-excitation theory [2]. In the nonlinear saturation regime
of a radiating bunched beam the synchronism of the slowing down
bunched beam with an injected co-propagating radiation wave may
be sustained by wiggler tapering in a process of Taper-Enhanced
Superradiance (TES) and Taper-Enhanced Stimulated Superradi-
ance Amplification (TESSA) [3]. Same processes are instrumental
also in enhancing the radiative emission in the tapered wiggler sec-
tion of seeded FEL [4, 5]. Considering these radiation emission
concepts provide guidelines for better design of high power FELs
and improved tapering strategy for enhancing the power of seeded
short wavelength FELs.

In Sect. II we show the general expressions for random spon-
taneous emission, super-radiant emission and stimulated-super-
radiant emission in a general spectral (Fourier transform) presen-
tation of Maxwell equations. We employ the formulation specif-
ically to the case of undulator radiation (UR) emission by a sin-
gle bunch or a finite duration pulse of periodic bunches (“bunch
train”). In Sect. III the analysis of spontaneous super-radiance
(SR) and “zero-order” stimulated super-radiance (ST-SR) is car-
ried out in phasor formulation for the steady state case of a periodi-
cally bunched electron beam (namely, an infinite train of bunches),
within the approximation of negligible energy loss of the radiat-
ing e-beam. In Sect. IV we extend the phasor analysis of super-
radiance and zero order stimulated super-radiance to the case of
a tapered wiggler (TES and TESSA). The dynamics of electron
interaction and energy loss due to interaction with the radiation is
neglected, assuming that ideally the wiggler tapering rate exactly
matches the energy loss of the perfectly bunched mono-energetic
beam. We compare for this case the relative intensity of the zero
order TESSA and the TES powers and its scaling with interaction
length. This comparison is of interest in connection to the tapered
wiggler section of a seed injected FEL. In Sect. V the dynamics of
the interaction of the electron beam bunch with the radiation is
taken into account by inclusion of the electron force equations.

II. SUPERRADIANCE AND STIMULATED

SUPERRADIANCE OF SPONTANEOUS EMISSION

As a starting point we review the theory of superradiant (SR)
and stimulated superradiant (ST-SR) emission from free electrons
in a general radiative emission process. In this section we use a

spectral formulation, namely, all fields are given in the frequency
domain as Fourier transforms of the real time-dependent fields:

Ă(r, ω) =

∫

∞

−∞

A(r, t)eiωtdt (1)

We use the radiation modes expansion formulation of [2], where
the radiation field is expanded in terms of an orthogonal set of
eigenmodes in a waveguide structure or in free space (eg. Hermite-

Gaussian modes):

{Ẽq(r), H̃q(r)} = {Ẽq(r⊥), H̃q(r⊥)}eikqzz (2)

Ĕ(r, ω) =
∑

±q

C̆q(z, ω)Ẽq(r) (3)

H̆(r, ω) =
∑

±q

C̆q(z, ω)H̃q(r) (4)

The electric/magnetic fields representing the transverse profile of
the mode are named Ẽ and H̃ and are supposed to be frequency
independent. The excitation equations of the mode amplitudes is:

dC̆q(z, ω)

dz
=

−1

4Pq

∫

J̆(r, ω) · Ẽ
∗

q(r)d
2
r⊥. (5)

where the current density J̆(r, ω) is the Fourier transform of J(r, t).
The above is formally integrated and given in terms of the initial

mode excitation amplitude and the currents

C̆q(z, ω)− C̆q(0, ω) = −
1

4Pq

∫

J̆(r, ω) · Ẽ
∗

q(r)dV, (6)

where

Pq =
1

2
Re

∫∫

(Ẽq × H̃q) · êzd
2
r⊥ =

|Ẽq(r⊥ = 0)|2

2Zq
Aem q , (7)

where Zq is the mode impedance (in free space Zq =
√

µ0/ǫ0), and
for a narrow beam, passing on axis near r⊥ = 0, Eq. (7) defines
the mode effective area Aem q in terms of the field of the mode on
axis Ẽq(r⊥ = 0). For Fourier transformed fields we define the total
spectral energy (per unit of angular frequency) based on Parseval
theorem as

dW

dω
=

2

π

∑

q

Pq |C̆q(ω)|
2, (8)

This is the definition when using only positive frequencies (0 < ω <
∞). Considering now one single mode q,

dW

dω
=

2

π
Pq |C̆q(ω)|

2, (9)

For a particulate current (an electron beam):

J(r, t) =
N
∑

j=1

−evj(t)δ(r − rj(t)) (10)
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the field amplitude increment appears as a coherent sum of contri-
butions (energy wavepackets) from all the electrons in the beam:

C̆outq (ω) − C̆inq (ω) ≡
N
∑

j=1

∆C̆qj(ω) = −
1

4Pq

N
∑

j=1

∆W̆qj (11)

∆W̆qj = −e

∫

∞

−∞

vj(t) · Ẽ
∗

q(rj(t))e
iωtdt (12)

The contributions can be split into a spontaneous part (indepen-
dent of the presence of radiation field) and stimulated (field depen-
dent) part:

∆W̆qj = ∆W̆0
qj +∆W̆st

qj . (13)

We do not deal in this section with stimulated emission, but indi-
cate that in general the second term ∆W̆st

qj is a function of C̆q(z)
through rj(t) and therefore vj(t) cannot be calculated explicitly
from the integral (12). Its calculation requires solving the electron
force equations and the differential equation (5). In the context of
conventional FEL in the linear regime, ∆C̆stqj is proportional to the

input field, i.e. proportional to C̆inq , and in this case the solution of
(5) results in the exponential gain expression of conventional FEL.

Assuming a narrow cold beam where all particles follow the same
trajectories, we may write rj(t) = r

0
j (t − t0j ) and vj(t) = v

0
j (t −

t0j), change variable t′ = t− t0j in Eq. (12) (see MOP078), so that
the spontaneous emission wavepacket contributions are identical,
except for a phase factor corresponding to their injection time t0j :

∆W̆0
qj = ∆W̆0

qee
iωt0j (14)

where

∆W̆0
qe = −e

∫

∞

−∞

v0e (t) · Ẽ
∗

q(r
0
e(t))e

iωtdt. (15)

The radiation mode amplitude at the output is composed of a sum
of wavepacket contributions including the input field contribution
(if any):

C̆outq (ω) = C̆inq (ω) + ∆C̆0
qe(ω)

N
∑

j=1

eiωt0j +
N
∑

j=1

∆C̆stqj =

C̆inq (ω) −
1

4Pq
∆W̆0

qe

N
∑

j=1

eiωt0j −
1

4Pq

N
∑

j=1

∆W̆st
qj (16)

so that the total spectral radiative energy from the electron pulse
is

dWq

dω
=

2

π
Pq

∣

∣

∣
C̆outq (ω)

∣

∣

∣

2
=

2

π
Pq







∣

∣

∣C̆inq (ω)
∣

∣

∣

2
+

∣

∣

∣∆C
(0)
qe (ω)

∣

∣

∣

2

∣

∣

∣

∣

∣

∣

N
∑

j=1

eiωtoj

∣

∣

∣

∣

∣

∣

2

+



C̆in ∗
q (ω)∆C

(0)
qe (ω)

N
∑

j=1

eiωtoj + c.c.



+



C̆in ∗
q (ω)

N
∑

j=1

∆Cstqj(ω) + c.c.



+

∣

∣

∣

∣

∣

∣

N
∑

j=1

∆Cstqj(ω)

∣

∣

∣

∣

∣

∣

2




≡

(

dWq

dω

)

in

+

(

dWq

dω

)

sp/SR

+

(

dWq

dω

)

ST−SR

+

(

dWq

dω

)

st

.

(17)

The first term in the {} parentheses represents the input field, given
the subscript “in”. The second term is the spontaneous emission,
which may be random beam spontaneous emission or superradi-
ant in case that all contributions add in phase, hence given the
subscript “sp/SR”. The third term has a very small value (av-
erages to 0) if the contributions add randomly, so it is relevant

only if the electrons of the beam enter in phase with the injected
radiation wave. It is thus dependent on the mode complex am-
plitude C̆inq , and therefore it marked by the subscript “ST-SR”,
i.e. “zero-order” stimulated superradiance. The last 2 terms in
the {} parentheses represent stimulated emission and we will not
consider them further in this work. Fig. 1(a) and (b) represent

FIG. 1: Different cases of radiation: (a) spontaneous emission, (b) su-

perradiance, (c) stimulated emission and (d) stimulated superradiance.

in C̆q complex plane the random and constructive contributions
of the radiation wavepackets to conventional spontaneous emission
and superradiance emission respectively. These corresponds to the
second term in Eq. (17) where in 1(a) the wavepackets interfere
randomly and in 1(b), constructively in phase. Fig. 1(d) represents
the third term in Eq. (17) where the coherent constructive inter-
ference of a prebunched beam interferes with the input field with
some phase offset. Fig. 1(c) represents regular stimulated emission
from a randomly injected electron beam (regular FEL).

When the electrons in the beam are injected at random in a long
pulse, and averaging the second term in Eq. (17), the uncorrelated
mixed terms cancel out and one obtains the conventional shot-noise
driven spontaneous emission [2, 9].

(

dWq

dω

)

sp

=
1

8πPq

∣

∣

∣
∆W̆

(0)
qe

∣

∣

∣

2
N (18)

Only when the electrons are bunched into a pulse shorter than
an optical period ω(∆t0i − t0) ≪ π one gets enhanced superra-
diant spontaneous emission, in which case all the terms in the
bracket of the third term of Eq. (17) add up constructively in phase
∑N
j=1 e

iωtoj = Neiωto resulting

(

dWq

dω

)

sp

=
1

8πPq

∣

∣

∣∆W̆
(0)
qe

∣

∣

∣

2
N2 =

〈(

dWq

dω

)〉

sp

N (19)

Figure 1(d) displays a process of of stimulated superradiance: all
electrons oscillate in phase, but because a radiation mode of dis-
tinct phase is injected in, the third term in Eq. (17) will contribute
positive or negative energy, depending whether the electron bunch
oscillates in phase or out of phase with the input radiation field. If
the phase of the electron bunch relative to the wave is ϕ, then the
third term in Eq. (17) represents stimulated superradiance spectral
energy:

(

dWq

dω

)

ST−SR

= −
1

2π

∣

∣

∣C̆inq

∣

∣

∣

∣

∣

∣∆W̆
(0)
qe

∣

∣

∣N cosϕ. (20)

At this point we extend the analysis to include partial bunch-
ing, namely electron beam bunches of finite duration and arbi-
trary bunch-shape function. One can characterize the distribution
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of electron entrance times toj of the electron bunch by means of
a normalized bunch-shape function f(t′0 − t0) = i(t′0 − t0)/(eN),
where i(t) is the e-beam bunch current, and t0 is the bunch center
entrance time:

∫

∞

−∞

f(t′0 − t0)dt
′
0 = 1. (21)

Then the summation over t0j may be substituted by integration

over entrance times t′0:

N
∑

j=1

eiωtoj = N

∫

f(t′0 − t0)e
iωt′

0dt′0 = Neiωt0Mb(ω), (22)

where

Mb(ω) =
1

N

〈

N
∑

j=1

eiωt0j

〉

=

∫

f(t)eiωtdt, (23)

is the Fourier transform of the bunch-shape function, i.e. the
bunching amplitude at frequency ω. It modifies Eqs. (19) and (20)
to

(

dWq

dω

)

sp

=
1

8πPq

∣

∣

∣∆W̆
(0)
qe

∣

∣

∣

2
|Mb|

2N2 (24)

and
(

dWq

dω

)

ST−SR

= −
1

2π

∣

∣

∣C̆inq

∣

∣

∣

∣

∣

∣∆W̆
(0)
qe

∣

∣

∣ |Mb|N cosϕ. (25)

In conditions of perfect bunching f(t) = δ(t), and consequently
Mb = 1, Eqs. (19) and (20) are restored.

For the case of undulator radiation we specify for each electron:

vj(t) = Re
[

ṽ⊥ je
−ikwzj(t)

]

(26)

where

ṽ⊥ j =
cãw

γj
=
ceẑ × B̃w

γjmkw
(27)

where B̃w is the complex amplitude of the undulator periodic mag-
netic field. Assume that the electron beam is narrow enough so
that all electrons experience the same field when interacting with
the mode

Ẽq(r
0
j (t)) = Ẽq(r⊥ = 0)eikqzz

0

j (t) (28)

where z0j (t) = vz(t − t0j), and r⊥ is the transverse coordinates
vector of the electron beam. Substituting this and Eq (26) in (14)
one obtains

∆W̆0
qj = −e

ṽ⊥0 · Ẽ
∗

q

2vz
L sinc(θL/2)eiθL/2eiωt0j , (29)

where L = Nwλw is the interaction length (λw = 2π/kw),
sinc(x) = sinx/x, and θ(ω), the detuning parameter, is defined
by

θ(ω) =
ω

vz
− kzq(ω) − kw. (30)

The detuning function sinc(θL/2) attains its maximum value at
the synchronism frequency ω0 defined by

θ(ω0) =
ω0

vz
− kzq(ω0)− kw = 0. (31)

Near synchronism

θ(ω)L ≃ (ω − ω0)ts = 2π
ω − ω0

∆ω
. (32)

where

ts =
2π

∆ω
=

L

vz
−

L

vgq
(33)

is the wave packet slippage time and vgq = dω/dkzq at ω0 is the
group velocity of the mode. In free space kzq = ω/c, vgq = c, and
the solution of (31) is the well known FEL frequency:

ω0 =
ckw

1/βz − 1
≃ 2γ2z ckw (34)

where

γ2z =
γ2

1 + a2w
(35)

And aw is the one period r.m.s. average of aw(z). It is equal to the
amplitude aw in the case of a helical wiggler and to aw/2 in a linear
wiggler. The second part of Eq. (34) applies for an ultra-relativistic
beam (β ≃ 1). In this limit

∆ω =
ω0

Nw
(36)

When substituting (29) into (19) one obtains the expression of UR
superradiance from a tight single bunch into a single mode q:

(

dWq

dω

)

SR

=
N2e2Zq

16π

(

aw

βzγ

)2 L2

Am
sinc2(θL/2) (37)

We now extend the analysis to the case of spontaneous emission
from a finite train of bunches. Following the formulation of [2], we
consider a train of NM identical bunches (neglecting shot noise)
separated in time Tb ≡ 2π/ωb apart. The arrival times of bunch k
is

t0k = [k − (NM/2)]2π/ωb (38)

In each bunch there are Nb electrons, the electron j being at time
interval ∆tj ≪ Tb relative to the center of the bunch. For the case
of interest of UR we obtain the general expression for spontaneous
SR and ST-SR spectral energy of a finite train of periodic bunches:

(

dWq

dω

)

SR

=
N2e2Zq

16π

(

aw

βzγ

)2 L2

Am
|Mb(ω)|

2

|MM (ω)|2 sinc2(θL/2) (39)

and the stimulated superradiant term is

(

dWq

dω

)

ST−SR

= |C̆inq (ω)|
Ne

2π

(

aw

βzγ

)

√

2ZqPq

Aem q
L

|Mb(ω)| |MM (ω)| sinc(θL/2) cos(ϕ − θL/2) (40)

where

MM (ω) =
sin(NMπω/ωb)

NM sin(πω/ωb)
(41)

and N = NMNb.

III. SINGLE FREQUENCY (PHASOR) FORMULATION

In the limit of a continuous train of microbunches or a long
macropulse NM ≫ 1, the grid functionMM (ω) behaves like a comb
of delta functions and narrows the spectrum of the prebunched
beam SR and ST-SR Undulator Radiation to harmonics of the
bunching frequencies ω = nωb. Instead of spectral energy, one can
then evaluate the average radiation power output by integrating
the spectral energy expressions over frequency and dividing by the
pulse duration: TM = NM2π/ωb. Alternatively, for an infinite
periodic train of identical bunches one may use directly a steady-
state single frequency (phasor) formulation. It is to be mentioned
that in this case the radiation frequency ω must be equal to the
bunch frequency ω = ω0 = ωb, otherwise there will not be any
steady-state interaction between them. The radiation mode exci-
tation equations in the phasor formulation of the radiation fields
{Ẽq(r), H̃q(r)} is the same as Eqs. (2)-(5) with C̃q(ω0) ≡ C̃q re-
placing C̆q(ω), and the spectral energy expression (8) replaced by
the total steady state radiation power. As in [6–8], we take a model
of a periodically modulated e-beam current of a single frequency
ω0:

I(z, t) = I0{1 +Re[M̃be
−iω0(t−z/vz)]} (42)
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Assuming the beam has a normalized transverse profile distribution
f(r⊥). The transverse current density in the wiggler is:

J⊥(r, ω0) =
Ĩm⊥ê⊥

2
f(r⊥)ei(ω0/vz−kw)z (43)

Where:

Ĩm⊥ê⊥ = I0M̃b
β̃w

βz
(44)

Writing now the excitation equation in phasor formulation we ob-
tain the superradiant and stimulated superradiant powers:

PSR(z) =
1

32
Zq|Ĩm⊥|2F 2 z2

Aem q
sinc2(θz/2) (45)

and

PST−SR(z) =
1

4
|C̃q(0)||Ĩm⊥||E⊥(0)|Fz

cos(ϕrb0 − θz/2) sinc(θz/2) (46)

where
ϕrb0 = ϕq(0) − ϕb0 (47)

is the phase difference between the radiation field phase ϕq(0) and
the bunching current phase ϕb0 at the entrance to the wiggler.

IV. TAPER ENHANCED SUPERRADIANCE (TES) AND

TAPER ENHANCED STIMULATED SUPERRADIANCE

AMPLIFICATION (TESSA)

We now extend our model to the case of a continuously bunched
electron beam interacting with a strong radiation field in an un-
dulator, so that the electron beam loses an appreciable portion of
its energy in favor of the radiation field. This case is particularly

FIG. 2: Schematics of seed-injected FEL followed by a tapered wiggler:

at saturation point, at the end of the constant parameters wiggler,

the partially bunched e-beam and the amplified radiation wave are in-

jected into a tapered wiggler section, where further radiation energy is

extracted out of the bunched beam.

relevant to the case of seed injected tapered wiggler FEL. In this
case (see Figure 2) the tapered wiggler section would emit both
TES and TESSA radiation. The input field amplitude and phase
relative to the beam bunching that enter into the TESSA process
are determined in this case by the gain and saturation processes in
the constant wiggler parameters FEL section preceding the tapered
wiggler section.

For a tapered wigler kw = kw(z), aw = aw(z) we extend the
definition of the detuning parameter (30):

θ(z) = k0
[

β−1
z − 1

]

− kw(z). (48)

where k0 = ω0/c. The synchronism condition θ(z) = 0 defines the
z-dependent synchronism energy of the electron beam:

γr(z) =

√

1 + a2w(z)

1− (1 + kw(z)/k0)−2
≃

√

1 + a2w(z)

2

k0

kw(z)
, (49)

where the second part of the equation corresponds to the ultra-
relativistic beam limit.

Assuming that the bunched electrons get trapped, so that in the
presence of fields they stay with energy close to the synchronism
energy γr(z) we write

γ = γr + δγ (50)

and therefore

θ =
dθ

dγ

∣

∣

∣

∣

γr

δγ = −
k0

β3
zrγ

2
zrγr

δγ, (51)

The phase of the bunched beam relative to the ponderomotive wave
is then:

ϕ(z) =

∫ z

0

[

−
k0

β3
zrγ

2
zrγr

δγ

]

dz′+ϕb0 =

∫ z

0
θE(z′)dz′ +ϕb0, (52)

Consequently,

C̃q(z) =C̃q(0)−
1

8
I0F

|Ĕq(0)|

Pq
eiϕb0

∫ z

0

aw(z′)

γ(z′)βz(z′)
|Mb(z

′)|ei
∫
z′

0
θE(z′′)dz′′dz′ (53)

Of course, in order to know δγ(z, E(z)) and consequently θE(z)
one must solve the force equation for the bunched electron beam
dynamics in the buckets of the slowing down ponderomotive po-
tential, as in the next section. Here we consider only the optimal
tapering strategy, such that the beam energy loss rate matches the
wiggler tapering, so that the detuning parameter stays constant:
θE(z) = θE(0). If we also assume as in [6] that the bunching
amplitude and amplitude coefficient in the integrand are approxi-
mately constant, then the equation is integrable, resulting in:

C̃q(z) = C̃q(0) −
Ĩm⊥

8Pq
|Ẽq(0)|Fze

iθE
0
z/2 sinc

(

θE0 z/2
)

(54)

Similarly to Eqs. (45) and (46) for SR/ST-SR we get then for a
tapered wiggler with tapering matched:

P (z) = P (0) + PTES(z) + PTESSA(z) (55)

where for θE0 = 0 and phase matched bunched current and radiation
field ϕrb0 = 0 [6]

PTES(z) =
1

32
Zq|Ĩm⊥|2F 2 z2

Aem q
(56)

and

PTESSA(z) =
1

4
|Ĩm⊥|

√

2Zq

Aem q

√

PinFz (57)

The ratio between the two contributions to the radiation power is
proportional to Ein(0), and inverse proportional to the distance
z. It is shown in Figure 3 for different initial power at z = z0.
Initially the TESSA power dominates the TES power, but evi-
dently, for long interaction length the TES power that grows like
z2 exceeds the TESSA power that grows like z. At the beginning

stages of interaction in the tapered wiggler the TESSA power may
be significantly higher than the TES power if the initial radiation
power Pin injected into the tapered section is large enough. This
balance is demonstrated in Figure 3 for the parameters of LCLS
[10].

V. DYNAMICS OF A PERIODICALLY BUNCHED

ELECTRON BEAM INTERACTING WITH RADIATION

FIELD IN A GENERAL WIGGLER

In this section we extend the analysis of SR and ST-SR in undu-
lator radiation of a periodically bunched beam, that was presented
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FIG. 3: Ratio of 0-order TESSA to TES for different initial power at

z = z0.

in sections III, IV based on radiation mode excitation and pha-

sor formulations, and we add the dynamics of the electrons under
interaction with the radiation wave. Solving now a steady-state
problem, we assume that the periodically bunched beam is com-
posed of all identical bunches (namely, shot-noise and finite pulse
effects are neglected). The bunches are tightly bunched, so they can
be modeled as Dirac delta functions. They all experience the same
force equation and have the same trajectories as macro-particles of
charge Qb = −eNb and the time interval between two consecutive
injected bunches is T0 ≡ 2π/ω0, therefore

J(r, t) = Qbve(t)δ(r⊥)
∞
∑

n=−∞

δ[z − ze(t − nT0 − t0)] (58)

The phasor mode excitation equation (5) of any harmonic of the
radiation emitted by the current (58) is applied with these sim-
plifying assumptions for calculating the radiation power. For the
tight bunch train model of Eq (58) the density of electrons per unit
volume is defined

n(r, t) = Nbδ(r⊥)
∑

j

δ

[

z −

∫ t

toj

vz(t
′)dt′

]

, (59)

where
t0j = jT0 + t0, (60)

Where t0j is the entrance time of bunch j into the wiggler at z = 0.
The function n(r, t) is periodic in time, with a period of T0 =
2π/ω0, so may be represented by the Fourier series

n(r, t) =
∞
∑

n=−∞

ñn(r)e
−inω0t, (61)

where the n harmonic coefficient of the density ñn(r) is given by

ñn(r) =
1

T0

∫ T0/2

−T0/2
n(r, t)einω0tdt. (62)

Setting Eq. (59) in Eq. (62) results in

ñn(r) =
Nbω0

2πvz
δ(r⊥)einω0(z/vz+t0), (63)

We assume that all bunches are identical, namely I(z = 0, t) =
−eNb

∑

∞

j=−∞
δ(t − jT0 − t0) (so that |M̃b| = 1). This current

contains an infinite number of harmonics, but we assume that only
the fundamental harmonic at ω0 is interacting synchronously with
the wave, so that we keep only ñ1(r) and ñ−1(r) = ñ∗

1(r), as
follows:

n(r, t) ≈ ñ1(r)e
−iω0t + c.c. = Re{ñ(r)e−iω0t} (64)

so that the phasor definition for the particles density is

ñ(r) = 2ñ1(r) (65)

From the above we may express v⊥ and derive from it J̃⊥:

J̃⊥ =
Qbω0β̃

∗

w

2πβz
δ(r⊥)ei

∫
z
0
(ω0/vz(z

′)−kw(z′))dz′+iϕb0 (66)

where ϕb0 = ω0t0 is the entrance phase of the bunched beam.
Defining

ϕ(z) =

∫ z

0

(

ω0

vz
− kw − kz

)

dz′ + ϕb0, (67)

and using Eq. (5) in a phasor context, we obtain

dC̃q(z)

dz
= −

Qbω0β̃w(z) · Ẽ
∗

q(0)

8πPqβz
eiϕ(z), (68)

We define the detuning parameter consistent with Eq. (30):

θ(z) ≡
dϕ

dz
=

ω0

vz(z)
− kw(z)− kz . (69)

The rate of change of the bunches energy is:

E(r, te(z)) = Re
[

C̃q(z)Ẽ(r⊥)e−i
∫
z
0
(ω0/vz(z

′)−kz)dz
′
−iϕb0

]

,

(70)
which for a tight bunch (r⊥ = 0) results in

mc2
dγ

dz
=

1

2βz
(−e)ηp|β̃w||Ẽq(0)||C̃q(z)| cos[ϕ(z)− ϕq(z)], (71)

where ϕ(z) is defined in (67), ϕq(z) is the phase of C̃q(z)

C̃q(z) = |C̃q(z)|e
iϕq(z). (72)

The polarization match factor ηp is defined by

ηp =
|β̃

∗

w · Ẽq(0)|

|β̃w||Ẽq(0)|
(73)

It is useful at this point to redefine the phase of the ponderomo-
tive wave as

ψ ≡ −[ϕ(z)− ϕq(z) − π/2], (74)

This results in (similarly to [4]):

dγ

dz
= −

eηp

2βzγmc2
aw(z)|Ẽq(0)||C̃q(z)| sinψ (75)

where we used |β̃w| = aw(z)/γ.

Likewise, also the equation for the mode amplitude (68) can be
expressed in terms of ψ:

dC̃q(z)

dz
= iBei[ϕq(z)−ψ], (76)

where

B = −
Qbω0ηpaw(z)|Ẽq(0)|

8πPqβzγ
, (77)

is a real positive parameter since Qb = −eNb < 0. We consider
now the case of a uniform wiggler, and therefore γr (see Eq. 49) is
independent of z, so that

dθ

dz
= −

k0

β3
zrγ

2
zrγr

dδγ

dz
= −

k0

β3
zrγ

2
zrγr

dγ

dz
. (78)

The total power of the electron beam can be expressed as

Pel =
1

T0
Nbmc

2(γ − 1) ≃
1

T0
Nbmc

2γ, (79)
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FIG. 4: Panel (a) shows the phase-space diagram ψ − θ, where the black line shows the separatrix at the end of the trajectory. Panel (b) shows

the radiation power change, the electron beam power change, and their sum which keeps 0.

We summarize here the equations to be solved:

d|C̃q|

dz
= B sinψ, (80)

dϕq

dz
=

B

|C̃q|
cosψ, (81)

dθ

dz
= K2

s (z) sinψ, (82)

dψ

dz
= −θ +

B

|C̃q |
cosψ (83)

where

K2
s (z) =

k0eηp

2β4
zrγ

2
zrγ

2
rmc

2
aw|Ẽq(0)||C̃q(z)| (84)

is the synchrotron oscillation wavenumber. In Figure 4 we show the

case of maximum energy extraction from a given input radiation

wave. The input wave is characterized by C̃q(0) = 1. For longer
runs, we get synchrotron oscillations, so that the beam and the
electromagnetic wave oscillated between minimum and maximum
power.

It should be pointed out that beyond preliminary design consid-
eration, the tight bunching model of the bunched beam dynamics
is only marginally fitting for describing the dynamics of a tapered
wiggler FEL, where the beam energy spread, bunching amplitude
and phase control are limited. It is, however, a quite good model
for describing the dynamics in optical frequency interaction ex-
periments, such as RUBICON and NOCIBUR, where quite tight

bunching and bunch phase control are achievable [11, 12].

[1] R.H. Dicke, ”Coherence in Spontaneous Radiation Processes”.

Physical Review 93 (1): 99-110, (1954)

[2] A. Gover, “Superradiant and stimulated-superradiant emission in

prebunched electron-beam radiators. I. Formulation” Phys. Rev.

ST-AB 8, 030701 (2005)

[3] J. Duris, A. Murokh, and P. Musumeci, “Tapering enhanced stim-

ulated superradiant amplification” ,New J.Phys. 17 063036, 2015

[4] N.M. Kroll, P.L. Morton, M.N. Rosenbluth, ”Free-Electron Lasers

with Variable Parameter Wigglers”, IEEE J. Quant. Electron.,

VOL. QE-17, NO. 8, AUGUST 1981

[5] Y. Jiao et al, “Modeling and multidimensional optimization of a

tapered free electron laser” PRST-AB 15, (050704) (2012).

[6] E. A. Schneidmiller, M. V. Yurkov, Optimization of a high effi-

ciency free electron laser amplifier PRST-AB 18, 03070 (2015).

[7] M. Arbel et al, Linear model formulation for superradiant and

stimulated superradiant prebunched e-beam free-electron lasers

PR-ST AB 17, 020705 (2014).

[8] I. Schnitzer and A. Gover, The Prebunched Free Electron Laser in

Various Operating Gain Regimes, NIM-PR, A237 124-140, (1985).

[9] R. Ianconescu, E. Hemsing, A. Marinelli, A. Nause and A. Gover,

“Sub-Radiance and Enhanced-Radiance of undulator radiation

from a correlated electron beam”, FEL 2015 Conference, August

23-28, Daejeon, Korea, 2015

[10] C. Emma, K. Fang, J. Wu, C. Pellegrini, ”High Efficiency, Multi-

Terawatt X-ray free electron lasers”, Phys. Rev. ST-AB, 17, 110701

(2014)

[11] J. Duris et al, “High-quality electron beams from a helical inverse

free-electron laser accelerator”, Nat. Commun. 5, 4928 (2014)

[12] N. Sudar, P. Musumeci, J. Duris, I. Gadjev, M. Polyanskiy, I.

Pogorelsky, M. Fedurin, C. Swinson, K. Kusche, M. Babzien

and A. Gover “Very high efficiency energy extraction from

a relativistic electron beam in a strongly tapered undulator”,

https://arxiv.org/abs/1605.01448 submitted to PRL

Acknowledgments

This research was supported in part by a grant from the United

States-Israel Binational Science Foundation(BSF), Jerusalem, IS-
RAEL

This research was supported in part by the Deutsch-Israelische
Projektkooperation (DIP)


