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I. INTRODUCTION

In a previous work [1], we derived an algorithm for transmitting the maximum possible

number of signals without crosstalk or return loss, in lossless multiconductor transmission

lines (MTL). Using this algorithm on a MTL of N + 1 conductors, one is able to transmit

N independent unaltered signals. The algorithm defines pre-processing and post-processing

units to be interfaced at the input and output of the lossless MTL, which are able to

completely eliminate crosstalk and return loss. In the current work we shall make a profound

analysis of lossy MTL, and evaluate the efficiency of the above algorithm for lossy MTL, for

which the properties are necessarily frequency dependent. Some preliminary results have

been presented in [2].

Knowing that the applications of fast data transmission on MTL (like flat cables, back-

planes, etc.) use differential signals between pairs of conductors, the application of such an

algorithm has the potential to roughly double the information rate. In addition, the usage

of differential signals does not allow a perfect match of the MTL [3–10].

The outline is as follows: In section II, we explain the theoretical background developed

in [1] and point on the changes that occur in the lossy case. Some classification of modes

according to their immunity to noise is also presented.

In section III we show the results of our simulations for several cases: copper losses only,

dielectric losses only and copper and dielectric losses together. From the analysis it results

that radiation losses exist too in the MTL configuration that we study. It is also shown how

one can extract the parameters of a homogeneous free space configuration, specifically the

characteristic impedance matrix from the results of the inhomogeneous analysis.

In section IV we analyze the consistency of the simulation results, i.e. how the results for

the different cases are connected to each other. We show in this section that the simulations

detected radiation losses in all the above cases.

In section V we show that although modes of MTL do not need to match results of two-

conductor MTL, we get a good match between them, in cases this is physically justified. In

section VI we apply the crosstalk canceling algorithm developed in [1] to the lossy case and

examine its performance. The work is ended by some concluding remarks.

Note: through this work, the unit matrix is noted by U , to avoid confusion with current

vectors I. All the matrix transpose operations are transpose and no conjugate.
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II. THEORETICAL BACKGROUND

The full details of this theoretical background are in [1], and we show here the main

results that we need in the current work.

We define the scattering matrix of the MTL for equal port impedances R. The near end

ports are numbered 1,2, .. N and the far end ports are numbered N + 1, N + 2, .. 2N . The

forward voltages into the ports are V +
1 , V +

2 , .. V +
N , V +

N+1, V +
N+2, .. V +

2N and will be grouped

as V +
ne at the near end (i.e. from 1 to N) and V

+
fe at the far end (i.e. from N + 1 to 2N).

We use the same grouping for the backward voltages: V −
ne and V

−
fe . The scattering matrix

is grouped into four N × N submatrices, as follows





V −
ne

V
−

fe



 =





Γ τ

τ Γ









V +
ne

V
+

fe



 , (1)

where the submatrices Γ and τ are symmetric, i.e.

Γ = Γ
T (2)

and

τ = τ
T (3)

The MTL may equally be described by a generalized ABCD matrix as follows





Vne

Ine



 =





A B

C D









Vfe

−Ife



 , (4)

where A, B, C and D are N × N submatrices, derived from Γ and τ as follows:

A =
1

2
[τ + (U + Γ )τ−1(U − Γ )], (5)

B =
R

2
[−τ + (U + Γ )τ−1(U + Γ )], (6)

C =
1

2R
[−τ + (U − Γ )τ−1(U − Γ )], (7)

and

D =
1

2
[τ + (U − Γ )τ−1(U + Γ )], (8)



4

Using properties (2) and (3), we remark that

A = D
T (9)

The above relations can be inverted, i.e. if one has the ABCD description, one obtains the

scattering matrix description as follows:

τ = 2[A + B/R + RC + D]−1. (10)

and

Γ = −1

2
τ [A − B/R + RC − D] (11)

The submatrices A, B, C and D are diagonalized by

A
′ = T

T
I ATV , (12)

B
′ = T

T
I BTI , (13)

C
′ = T

T
V CTV , (14)

and

D
′ = T

T
V DTI , (15)

where the transformations TV and TI satisfy the relation

T
T
V TI = U , (16)

and one has to diagonalize A (or D) to obtain them, and then apply them on the other

matrices.

It is to be mentioned that in general the transformations TV and TI are complex and

frequency dependent. The imaginary part is due to losses and the frequency dependence

is due to losses and/or due to the frequency dependence of the relative dielectric constant.

However, dielectric constant may be almost frequency independent, at least in a given fre-

quency range. We used in [1] a frequency independent dielectric constant, and no losses,

hence we obtained real and frequency independent transformations TV and TI . With losses,

the transformations are frequency dependent and have imaginary values, however, for small

losses the frequency dependence is weak and the imaginary parts are small.

From the diagonal matrices in Eqs. (12)-(15) one obtains the eigenvalues of the charac-

teristic impedance matrix:

Z ′
0 =

√

B′/C ′, (17)
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and the electric delay of the modes θ given by

θ = arccos(A′), (18)

from which one obtains the equivalent relative dielectric constant of the modes ǫeq, or its

square root, the refraction index n

n =
√

ǫeq =
cθ

2πfl
. (19)

It is to be mentioned that the values of Z ′
0, θ and ǫeq are real for lossless MTL, but have

imaginary values in the lossy case.

The connection between the characteristic impedance matrix and its eigenvalues matrix

Z ′
0 is given by

Z
′
0 = T

T
I Z0TI . (20)

A. The special case of homogeneous media

In [3] it is shown that for a MTL in homogeneous medium, one can express the voltage-

current vector pair at the near end as function of the voltage-current at the far end by the

ABCD representation, so that

A = D = U cos(θ)

B = jZ0 sin(θ)

C = jY0 sin(θ) (21)

where Y0 = Z
−1
0 is the characteristic admittance matrix and

θ =
2πfl

c

√
ǫr (22)

is the propagation shift angle of the whole voltage-current wave.

In this case A and D being diagonal with equal elements, they are diagonalized by

any orthogonal matrix, so that one cannot find TV or TI from them. Instead, one has to

diagonalize Z0 which is symmetric and from it one obtains the orthogonal matrix TV =

TI ≡ T , so that

Z
′
0 = T

T
Z0T, (23)
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B. Scheme for a matched and crosstalk free transmission

We summarize in this subsection the scheme for a matched and crosstalk free transmission

[1], shown in Figure 1. The line is fed by the maximum number of independent generator

FIG. 1: Multiconductor communication implementing a matched and crosstalk free transmission

scheme. A pre-processing transformation unit is implemented at the input of the MTL and a

post-processing transformation unit is implemented at the output of the line.

signals Vg i, for i = 1, 2..N , each having the internal impedance Zg i and loaded at the far

end by the loads ZL i, so that the generator and load impedances are described by diagonal

matrices Zg and ZL. In general, Zg and ZL may be complex, but matching a complex

load to transmission line requires more sophistication even in the one dimensional case, so

for the purpose of this work, Zg and ZL are considered real. The pre and post-processing

transformations are computed by

Gpost =

√

ZLZ
′ −1
0 T

−1
V . (24)

and

Gpre = TV

√

Z ′
0Z

−1
g . (25)

We remark that both Gpre and Gpost are easily computed because ZL, Zg and Z ′
0 are

diagonal matrices. Gpre and Gpost are real in the lossless case, but complex in case of

losses (because TV is complex). Because we are able to implement real pre and post-

processing transformations and those matrices are complex, there is some degradation in

the performance of the algorithm due to losses. This issue is further discussed in section VI.
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When using the processing units, the relations between Vin, Vout and Vg are

Vin =
1

2
Vg, (26)

and

Vout =
√

ZLZ−1
g Vin exp(−jθ), (27)

where exp(−jθ) is a diagonal matrix describing the delays of the modes, see Eq. (19).

C. Classification of modes by their immunity to noise

We shall discuss in this section the properties of modes in what concerns their immunity

to noise, where the noise is any random voltage due to electromagnetic interference for

example. To simplify and to be able to use analytic results as examples, we consider here

homogeneous medium so that TV = TI ≡ T and lossless cases, so that the characteristic

impedance matrix is real.

In the context of three conductors, i.e. two conductors and ground we know there are

two modes, which we usually call the differential mode and the common mode. It is to be

mentioned that this strict classification is valid if the geometry of both conductors relative

to the ground is identical, as for the examples in Figure 2. Such configurations have a

FIG. 2: Cross sections examples of two conductors having the same geometry relative to ground:

a. two wires above an “infinite” ground plane, and b. two wires symmetric around a ground wire.

characteristic impedance matrix of the type

Z0 =





R R12

R12 R



 (28)
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where R is the characteristic impedance of the single conductor relative to ground (named

“single ended mode” in [11]) and R12 is the mutual term. The eigenvectors of the charac-

teristic impedance matrix in Eq. (28) are the columns of

T =





−1/
√

2 1/
√

2

1/
√

2 1/
√

2



 , (29)

so that calling the voltages on the physical lines V , and the modal voltages V ′, we have

V ′ = T T V . Specifically, for N = 2, calling the voltages V1 and V2, we obtain the modal

voltages

V ′
1,2 = (V2 ∓ V1)/

√
2, (30)

where V ′
1 is the differential mode and V ′

2 is the common mode. Let us suppose the conductors

are close enough so that external noise n1 and n2 added to the voltages V1 and V2 respectively

are closely correlated. This is connected to the rule of maintaining the conductors close to

each other [11]. We assume that the statistical averages 〈n1〉 = 〈n2〉 = 0, 〈n2
1〉 = 〈n2

2〉 = σ2

and 〈n1n2〉 = ρσ2, where ρ ≃ 1 is the correlation coefficient which is supposed to be close

to 1. The modal noises are

n′
1,2 = (n2 ∓ n1)/

√
2, (31)

so that

〈n′ 2
1,2〉 = σ2(1 ∓ ρ). (32)

For ρ ≃ 1, the differential mode noise 〈n′ 2
1 〉 ≃ 0 and the common mode noise 〈n′ 2

2 〉 ≃ 2σ2.

We remark that the sum of the noises power

〈n′ 2
1 〉 + 〈n′ 2

2 〉 = 〈n2
1〉 + 〈n2

2〉 = 2σ2, (33)

because the transformation preserves the noise power.

For the general case of MTL, with N conductors and ground, Eq. (33), may be generalized

to
N

∑

j=1

〈n′ 2
j 〉 =

N
∑

j=1

〈n2
j〉 = Nσ2, (34)

where we considered again 〈n2
j〉 = σ2 for any j and it remains to classify the values of 〈n′ 2

j 〉.
If the condition of an identical geometry of any conductor relative to ground is satisfied,

i.e. identical “single ended modes” in [11], the characteristic impedance matrix has identical

terms on the diagonal, and only in this case one can still define a “differential mode”, having
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a noise power close to 0, like in the example of Figure 3a, representing wires above Printed

Circuit Board (PCB) [12]. Following the procedure described in [3, 4], and using the image

FIG. 3: Cross sections examples of three conductors having the same geometry relative to ground:

a. three wires above an “infinite” ground, where we defined the wire radius a, the distance between

the wires d and the distance to the ground d1, and b. three wires symmetrically arranged around

a ground wire.

method, one can calculate analytically the characteristic impedance matrix for d, d1 ≫ a,

obtaining

Z0 ij =
η0

2π







ln 2d1

a
i = j

ln
√

1 + 2d1

(j−i)d
i 6= j

, (35)

where η0 = 377Ω is the free space impedance. For N = 3, d/a = 7.9128 and d1/d = 2, this

results in

Z0 =
η0

2π











3.45477 1.41661 0.80472

1.41661 3.45477 1.41661

0.80472 1.41661 3.45477











, (36)

having eigenvectors given by the columns of

T =











−0.44808 −1/
√

2 0.54702

0.77360 0 0.63368

−0.44808 1/
√

2 0.54702











. (37)

Considering for simplicity the correlations between all pair of noises ρ = 1, one gets the

modal noises

n′
1 = 0.015σ2 , n′

2 = 0 , n′
3 = 2.985σ2, (38)

defining the second mode as the “differential mode”. A very special case of N = 3 is shown

in Figure 3b, showing identical mutual impedance properties between all pair of conductors.



10

The characteristic impedance matrix has the form

Z0 =











Rd Rod Rod

Rod Rd Rod

Rod Rod Rd











, (39)

where Rd are the diagonal elements and Rod are the off diagonal elements. Such a configura-

tion has two degenerate “differential modes” and one additional mode which may be called

in this case the common mode, yielding the following modal noises power (for ρ = 1)

n′
1 = 0 , n′

2 = 0 , n′
3 = 3σ2, (40)

For the geometry discussed in this paper, shown in Figure 4, each conductor relates

differently to the ground, so that there is no “differential” mode and the modal noises come

out:

n′
1 = 0.013991σ2 , n′

2 = 0.061921σ2 , n′
3 = 2.9241σ2, (41)

To summarize this section: the modes can always be ordered by their noise immunity, from

the less noisy mode to the noisiest mode. In case all conductors have the same geometry

relative to ground, i.e. the characteristic impedance matrix has identical terms on the

diagonal, there is always a mode which can be named “differential” , having a very low

noise power (0 for very high correlation between the noises developed on the conductors).

Degenerate differential modes may also exist when mutual impedances between several pairs

of conductors are identical.

As mentioned at the beginning of this section, we used for simplicity lossless examples,

but the above conclusions are valid for lossy MTL, provided the above symmetries apply to

the losses mechanism too. For example, if the MTL in Figure 2a has copper losses (which

are the dominant losses in such configuration due to the thin conductors), the characteristic

impedance matrix in Eq. (28) has the form

Z0 =





R(1 − jα) R12(1 − jγ)

R12(1 − jγ) R(1 − jβ)



 (42)

where α, β and γ are positive (because copper losses result in negative imaginary additions)

and usually small, for small losses. The identical values R in Eqs. (28) or (42) on the

diagonal are due to the identical geometries of both conductors relative to ground, but this
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applies also to the losses, so that α = β (unless the conductors are of different materials).

The eigenvectors of the characteristic impedance matrix in (42) are still the columns of the

matrix in (29) if α = β, so that the same “differential” and “common” modes arise in the

lossy case.

III. ELECTROMAGNETIC SIMULATIONS

We analyze in this section the results of our electromagnetic simulations. We use HFSS

commercial ANSYS software (FEM method), to model the MTL into an S parameters block,

for all the frequencies we need, and for all the cases we deal with.

Our convergence criterion is as follows: between consecutive iterations, as long as the

difference between the absolute values is bigger than 0.005 for each element of the S param-

eters matrix, the computation continues. This means that the worse converged coefficient of

the matrix has an error of 0.005 , hence the overall error is much smaller. To learn more on

the accuracy of our S parameters matrices we examined how close they are to the structure

predicted theoretically in Eq. (1) (i.e. two identical submatrices Γ on the diagonal and two

identical submatrices τ on the anti-diagonal) and we found out that our typical error for

the S parameters coefficients is around 10−4 − 10−5.

From each S parameters, we calculate a generalized ABCD matrix representation (see

Eqs. (5)-(8)) from which we calculate the characteristic impedance eigenvalues of the modes

(Eq. (17)), the electrical delay angle of each mode (Eq. (18)) and the pre-processing and

post-processing matrices (Eqs. (24)-(25)) needed for a perfect match and for eliminating

crosstalk, as explained in section II.

We use the MTL geometry shown in Figure 4, and the cross section in Figure 5 shows

the insulator of relative dielectric constant ǫr = 2.1, of dimensions 2mm on 6mm (see

[1]). We ran four distinct cases: “lossless” (i.e. ideal conductors and tan δ = 0), “copper

losses only” (copper conductors and tan δ = 0), “dielectric losses only” (ideal conductors

and tan δ = 0.001) and “copper and dielectric losses together” (copper conductors and

tan δ = 0.001). Each case is simulated for the frequencies 50, 100 and 200MHz.

In all the cases, losses being small, the real part of the characteristic impedance matrix

eigenvalues, and equivalent relative dielectric constants (or refraction index) of the modes
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FIG. 4: The geometry is based on flat cables, the conductors are cylindrical with radius a =

0.1605 mm, and the distance between their centers is d = 1.27 mm. The number of conductors

is 4, hence N = 3. The MTL length is l = 20 cm (the figure is not in proportion due to space

limitations). The port number is shown near each terminal, so that the near/far end ports are

relative to the near/far end grounds which are of course different electric points, but for simplicity

marked with the same ground symbol.

FIG. 5: Cross section of the conductors inside the insulator. The arrows show the electric field for

some feeding and one remarks that it is partially in the insulator and partially in the surrounding

space. We used the relative dielectric constant ǫr = 2.1. We simulated the cases of tan δ equal 0

or 0.001 and the cases of copper or ideal conductors.



13

are essentially like in [1], as follows:

Z ′
0 = 427.5, 185.5, 88Ω, (43)

ǫeq = 1.77, 1.99, 2.08 and n =
√

ǫeq = 1.33, 1.41, 1.44 (44)

and the delay angles are obtained for each mode/frequency by inverting Eq. (19) for θ and

using the values in (44).

It is interesting to remark, that if we rescale the eigenvalues of the characteristic

impedance matrix by the relative dielectric constants of the modes, and transform back

(see Eq. (20))

TV (Z ′
0n)T T

V =











380.05 231.61 148.44

231.61 331.4 165.7

148.44 165.7 248.22











Ω, (45)

we reproduce the free space characteristic impedance matrix, calculated analytically in [3, 4].

This confirms the correctness and accuracy of our simulations.

The imaginary part of the characteristic impedance matrix eigenvalues (Eq. (17)), and of

the delay angle (Eq. (18)) resulting from the simulations represent the losses and are given

in the following tables for all the modes and all the simulated frequencies. The “lossless”

case (for which those imaginary parts should theoretically be 0) are also shown in those

tables. In [1] we neglected those imaginary values, considering them numerical simulation

errors, but here we will show that they represent radiation losses. For further referencing, we

symbolically mark the values for the simulated cases: lossless, copper losses only, dielectric

losses only and copper and dielectric losses by x, y, z and w, respectively.

The following tables I-III show the simulation results for the imaginary parts of the

characteristic impedance matrix eigenvalues Im{Z ′
0}, and the delay angles Im{θ}, for the

frequencies 50, 100 and 200MHz, respectively. One remarks that Im{Z ′
0} is negative in the

case of copper losses only and positive in the case of dielectric losses, as happens in the

case of a two-conductor transmission line (TL). For the lossless case (which actually shows

radiation losses) Im{Z ′
0} may be either positive or negative. It comes out that for the case of

copper and dielectric losses, Im{Z ′
0} is negative, showing that copper losses are dominant.

The values for Im{θ} are negative in all cases, representing an exponential decay of the

forward moving waves.
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TABLE I: Imaginary parts of the characteristic impedance eigenvalues Z ′
0 in units of Ω and of the

electric delay angle of the modes θ for frequency 50MHz

Lossless (x) Copper only (y) Dielectric only (z) Copper and Dielectric (w)

Im{Z ′
0}

mode 1

mode 2

mode 3

-0.028904

0.2343

0.15709

-1.529

-1.0609

-0.91779

0.11297

0.34403

0.19479

-1.3887

-0.97514

-0.87316

Im{θ}
mode 1

mode 2

mode 3

-1.5105e-04

-7.6636e-06

-7.316e-06

-1.4782e-03

-2.1563e-03

-2.658e-03

-2.5111e-04

-1.4449e-04

-1.5576e-04

-1.5782e-03

-2.2938e-03

-2.8075e-03

TABLE II: Imaginary parts of the characteristic impedance eigenvalues Z ′
0 in units of Ω and of the

electric delay angle of the modes θ for frequency 100MHz

Lossless (x) Copper only (y) Dielectric only (z) Copper and Dielectric (w)

Im{Z ′
0}

mode 1

mode 2

mode 3

0.032535

0.32629

0.23026

-1.0106

-0.62117

-0.53842

0.1683

0.45631

0.34604

-0.8632

-0.55127

-0.4724

Im{θ}
mode 1

mode 2

mode 3

-6.2666e-04

-2.0782e-05

-9.6385e-06

-2.4919e-03

-3.0513e-03

-3.7457e-03

-8.2367e-04

-2.891e-04

-3.0351e-04

-2.6939e-03

-3.3239e-03

-4.0415e-03

TABLE III: Imaginary parts of the characteristic impedance eigenvalues Z ′
0 in units of Ω and of

the electric delay angle of the modes θ for frequency 200MHz

Lossless (x) Copper only (y) Dielectric only (z) Copper and Dielectric (w)

Im{Z ′
0}

mode 1

mode 2

mode 3

0.042204

0.17168

-0.015032

-0.68227

-0.52052

-0.59712

0.18483

0.2617

0.036131

-0.54387

-0.4359

-0.5478

Im{θ}
mode 1

mode 2

mode 3

-2.4341e-04

-6.2179e-05

-3.2523e-05

-5.0905e-03

-4.3822e-03

-5.343e-03

-2.8327e-03

-6.0848e-04

-6.2514e-04

-5.4899e-03

-4.9297e-03

-5.9409e-03
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IV. CONSISTENCY OF THE SIMULATION RESULTS

In principle one expects the simulation results for copper and dielectric losses to reproduce

the sum of the losses of the individual separate simulations (for copper losses and dielectric

losses), i.e. the simulation results for copper and dielectric losses should reproduce the sum

for the imaginary values (for Z ′
0 or θ) from the individual simulations. One may check that

this does not come out, and the explanation for this is the presence of radiation losses in all

the simulations.

If indeed the simulations detected radiation losses (which are the only losses in the case we

called “lossless”), it means that the values marked symbolically with x, represent radiation

losses. Those being present also in the “copper only” simulations, for which the imaginary

results have been marked symbolically with y, it means that y includes radiation and copper

losses.

By the same logic, the “dielectric only” simulations, for which the imaginary results have

been marked symbolically with z, contain radiation and dielectric losses, and the “copper

and dielectric” simulations, for which the imaginary results have been marked symbolically

with w, contain all the losses, i.e. radiation, copper and dielectric.

Hence, to obtain the true copper losses effect one has to compensate the radiation losses,

so that they are obtained from y − x, and so the true dielectric losses effect are obtained

from z−x and the total copper and dielectric losses effect is obtained from w−x. Therefore,

to check the consistency of the simulation results, one has to check that (y − x) + (z − x) =

(w − x), or w = y + z − x.

In table IV we compare the simulation results for the case of copper and dielectric losses,

marked by w (and actually representing all the losses), with the simulation results from

the “copper only” case (y) plus with the simulation results from the “dielectric only” case

(z), minus the simulation results from the “lossless” case (x, which actually contains the

radiation losses only). The results in table IV confirm that our assumption of the detection

of radiation losses in all the simulations is correct, and the values compare very well, showing

an average deviation of 1.5% between the results. The maximum deviation is of 10%, but we

notice that those imaginary parts of Z ′
0 are small fractions of the real part of Z ′

0 in Eq. (43),

so that larger deviations for small values is possible.
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TABLE IV: Comparison between the imaginary values obtained by the simulation with copper and

dielectric losses, called w and the combination of the imaginary values obtained by the separate

simulations, called y + z − x. The table on the left side compares the imaginary part of Z ′
0 (in

units of [Ω]), and the table on the right side compares the imaginary part of θ.

Frequency w y + z − x

50MHz

mode 1

mode 2

mode 3

-1.3887

-0.97514

-0.87316

-1.3871

-0.95117

-0.88

100MHz

mode 1

mode 2

mode 3

-0.8632

-0.5513

-0.4724

-0.8748

-0.491

-0.4224

200MHz

mode 1

mode 2

mode 3

-0.54387

-0.4359

-0.5478

-0.5396

-0.4308

-0.546

Frequency w y + z − x

50MHz

mode 1

mode 2

mode 3

-1.5782e-03

-2.2938e-03

-2.8075e-03

-1.5783e-03

-2.2931e-03

-2.8064e-03

100MHz

mode 1

mode 2

mode 3

-2.6939e-03

-3.3239e-03

-4.0415e-03

-2.6891e-03

-3.3404e-03

-4.04e-03

200MHz

mode 1

mode 2

mode 3

-5.4899e-03

-4.9297e-03

-5.9409e-03

-5.4892e-03

-4.9285e-03

-5.9356e-03

V. COMPARISONS WITH TWIN LEAD TWO-CONDUCTOR TL

A two conductor transmission line (TL) propagates one single propagation mode, while

for a MTL of N conductors and ground, one has N propagation modes, in our example from

Figure 4, N = 3. So when comparing properties of a MTL mode with the single mode of

a two conductors TL, one may expect some similarities if these properties are governed by

same physical processes. The most resembling two-conductor TL to the MTL analyzed in

this work is the twin lead TL, hence we shall compare some results with it.

The characteristic impedance for a lossy two-conductor TL may be written as

Z0 =

√

R + jωL

G + jωC
≃ Z00 + j(Z0 copper + Z0 dielectric) (46)

where L, C, R and G are the per length unit inductance, capacitance, serial resistance and

parallel conductance and Z00 =
√

L/C is the real part of Z0, and also its main part, given

small losses, and

Z0 copper = − Rc

2ω
√

ǫeq

(47)

Z0 dielectric =
Z00 tan δeq

2
(48)
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are the imaginary parts of Z0 due to copper and dielectric losses, respectively. In Eq. (47) c is

the speed of light in vacuum, ǫeq is the equivalent relative dielectric constant and ω = 2πf is

the angular frequency. In Eq. (48) tan δeq is the equivalent loss tangent, taking into account

the part of the fields in air.

The value of Z00 is not directly related to the characteristic impedance eigenvalues Z ′
0.

For example for a twin lead with the parameters from Figure 4 in free space, Z00 = 246.26Ω,

while an MTL as in Figure 4 in free space has the characteristic impedance eigenvalues:

108.06, 153.91 and 697.69Ω [3, 4], which is easily verified by diagonalizing Eq. (45). However,

Z0 copper in Eq. (47) does not depend on Z00, but rather on the per length unit resistance R,

which for a twin lead is:

R =
2

σδp
, (49)

where the factor 2 is due to two conductors, σ = 5.8e7 S/m is the copper specific conduc-

tance, δ =
√

2
ωµ0σ

is the skin depth and p = 2πa = 1mm is the perimeter (or circumference)

of the conductors (see Figure (4)). In table V we compare the imaginary part of the charac-

teristic impedance eigenvalues obtained from the simulation due to copper losses only, with

TABLE V: Comparison between the Im{Z ′
0} (in units of [Ω]) due to copper losses only, obtained by

the simulation vs. Eq. (47). The copper losses effect is obtained by compensating for the radiation

losses, i.e. by using the results for “copper only” minus the results for “lossless”, which we mark

by y − x.

Frequency y − x Analytic

50MHz

mode 1

mode 2

mode 3

-1.5001

-1.2952

-1.0749

-1.3125

-1.2367

-1.2096

100MHz

mode 1

mode 2

mode 3

-1.04313

-0.94746

-0.76868

-0.92903

-0.8755

-0.85636

200MHz

mode 1

mode 2

mode 3

-0.72447

-0.6922

-0.58209

-0.6571

-0.61907

-0.60555

Eq. (47). In Eq. (47) we use the ǫeq for the modes given in Eq. (44) and as explained before,
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the copper losses effect is obtained from the simulation after compensating for the radiation

losses, i.e. by using the values marked by y − x. The average of the absolute error is 9.2%.

The electric delay angle for a lossy two-conductor TL may be written as

θ = ωl
√

[L + R/(jω)][C + C/(jω)] ≃ θ0 + j(θcopper + θdielectric) (50)

where θ0 = ωl
√

LC is the real part of θ, and also its main part, given small losses, and

θcopper = −
√

ǫeqRl

2η0
(51)

θdielectric = −θ0 tan δeq

2
(52)

are the imaginary parts of θ due to copper and dielectric losses, respectively. Eq. (52) can

be inverted to
tan δeq

tan δ
= −2θdielectric

θ0 tan δ
, (53)

and this is expected to be almost frequency independent, because we used a relative dielectric

TABLE VI: Comparison between results of tan δeq/ tan δ obtained from the simulation (Eq. (53))

vs. those obtained from the analytic equation (54). The simulation results are elaborated from

the results obtained for “dielectric losses only” (marked by z) minus the results obtained from the

“lossless” simulation (marked by x), and the results are almost frequency independent. For the

analytic formula we used ǫeq from Eq. (44).

Mode Simulation result Analytic result

1 0.72 0.82

2 0.92 0.95

3 0.98 0.99

constant which is frequency independent. This may be compared with the ratio given in [9]

and defined there as a “filling factor”:

tan δeq

tan δ
=

ǫr(ǫeq − 1)

ǫeq(ǫr − 1)
, (54)

which compensates for the part of the fields in air, so that if ǫeq = ǫr (all the fields are inside

the dielectric), tan δeq = tan δ and if ǫeq = 1 (all the fields are in the air), tan δeq = 0. In

table VI we compare the values for tan δeq/ tan δ obtained from simulation (Eq. (53)) vs.

the values obtained from Eq. (54). The average absolute error of this comparison is 6%.
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VI. THE CROSSTALK ELIMINATION ALGORITHM ON THE LOSSY MTL

We tested the crosstalk elimination algorithm on the MTL with copper and dielectric

losses, using the circuit described in Figure 6 for the simulations. The post and pre-

FIG. 6: The geometry and the physical dimensions (a = 0.1605 mm, d = 1.27 mm and l = 20 cm)

are described in Figure 4, and shown again here, for convenience. The conductors 1, 2 and 3 are

fed by Vg i = 2V with an internal impedance of Zg i = 50Ω, at 50, 100 and 200MHz respectively

(which represent forward voltages of 1V through transmission lines of 50Ω), and are loaded at the

far end with ZL i = 50Ω. The conductors are numbered up-down by 1, 2 and 3 and the grounded

conductor is the common.

processing units are designed according to Eqs. (24) and (25), but in our case of losses

the transformation TV is complex and frequency dependent and so are the processing units

Gpre and Gpost.

However, as explained in section II, the transformation matrices TV and TI are approx-

imately real and frequency independent, and their imaginary and/or frequency dependent

parts are due to losses, and so are the processing units, according to Eqs. (24) and (25).

Now mathematically we can implement any complex frequency dependent processing

unit, but thinking of a future implementation, it would be much simpler and more advan-

tageous to implement real transformations. Such an implementation should be robust and



20

for all frequencies, anticipating the system to run signals in a certain frequency range. Cer-

tainly, those transformations do not diagonalize exactly, hence we expect a degradation in

performance.

For this reason we chose to use the real part of TV to calculate the necessary processing

units Gpre and Gpost. Given the fact we used frequencies 50, 100 and 200MHz, we chose to

use TV for a middle frequency in the range, i.e. 100MHz. We obtain:

Gpre =











2.3265 0.003883 0.57064

1.643 1.3676 −0.51352

0.67822 1.3633 1.0902











. (55)

and Gpost = G−1
pre, because we used load impedances equal to generator impedances (see

Eqs. (24) and (25)).

In table VII we present the results obtained from the “Designer” software which uses

the S matrices obtained from the electromagnetic simulations with copper and dielectric

losses, representing the MTL in the circuit described in Figure 6 (implemented once with

the processing units, and once without them). For the case of using the processing units,

TABLE VII: Voltages Vin and Vout measured by Designer for the circuit described in Figure 6.

Magnitude is in [V], phase is in degrees and the upper row shows the frequencies in [MHz].

With processing units No processing units

f 50 100 200 50 100 200

Vin 1 1 6 -0.096 0.448m6 -110.31 0.377m6 -131.22 1.375 6 12.83 0.29 6 4.04 0.076 6 -36.63

Vin 2 0.227m6 -98.547 1 6 0 0.926m6 -145.36 0.28 6 25.77 1.44 6 8.68 0.202 6 -0.48

Vin 3 0.372m6 -94.4 0.55m6 -117.35 1 6 -0.225 0.167 6 14.81 0.226 6 10.15 1.604 6 4.98

Vout 1 1 6 -16.05 0.023m6 -73.694 0.396m6 101.74 0.765 6 -31.58 0.28 6 158.12 0.137 6 112.19

Vout 2 0.0141m6 29.856 1 6 -34.04 0.0758m6 -133.99 0.252 6 -166.67 0.71 6 -43.01 0.212 6 113.92

Vout 3 0.103m6 -153.88 0.018m6 -20.15 0.994 6 -69.546 0.163 6 -170.91 0.21 6 161 0.71 6 -72.95

ideally in case of complete crosstalk elimination and perfect match, the input voltages Vin 1,2,3

on the diagonal (written with bold face) should have been 16 0, according to Eq. (26). We see

that the 100MHz behaves best, probably because we used the TV transformation obtained

for 100MHz to compute the processing units. Also, in the ideal case, the output voltages
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Vout 1,2,3 on the diagonal (written with bold face) should have been 16 θ1,2,3, where θ1,2,3 are the

delay angles of 50MHz on mode 1, 100MHz on mode 2 and 200MHz on mode 3, respectively,

according to Eq. (27). The theoretical values for those angles is 15.951o, 33.862o and 69.235o,

respectively. All the small non bold values in table VII, should have been ideally 0, and

they are 3 order of magnitude smaller than 1V, when using the processing units.

Without processing units, we see the crosstalk also at the input, i.e. in the Vin 1,2,3 voltages

and also at the output voltages Vout 1,2,3. Still the excited frequency at the given port, has a

higher value than the others, and has been marked by bold face. For example the 50MHz

has been applied at port 1, and we see that for 50MHz, Vin 1 = 1.375V, while the crosstalk

values Vin 2,3 are 0.28V and 0.167V, respectively and are smaller than Vin 1.

The results shown in table VII are plotted in time in Figure 7. In the left group of plots,
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FIG. 7: Plots of the input and output voltages in time. The left group of plots shows the input

and output voltages for the case the processing units are active, and the right group of plots shows

the same voltages without the processing units. All the horizontal axes are in units of 10−8 sec, so

that this time range fits to one cycle of 50MHz.

which has been obtained with active processing units, we see almost clean harmonics of
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50, 100 and 200MHz at ports 1, 2 and 3 respectively (negligible crosstalk), and the output

voltages have the same amplitudes as the input voltages, shifted by the adequate phase,

emphasizing a very good impedance match. In the right group of plots, obtained without

the processing units, we distinguish a “main” frequency of 50, 100 and 200MHz at ports 1,

2 and 3 respectively, but each signal is mixed with the other frequencies, due to crosstalk.

VII. CONCLUSIONS

We analyzed in this work the properties of lossy MTL in an open (flat cables like) geom-

etry. We checked separately and together, copper and dielectric losses, and we showed that

the simulations detected radiation losses in all the simulated cases.

We also obtained a good comparison between the losses characteristics of individual MTL

modes with two conductor TL, in cases in which this is physically justified.

We applied the crosstalk elimination algorithm developed in [1] to MTL with copper and

dielectric losses. Because losses are frequency dependent, the idea is to design the algorithm

for a “middle frequency” in the relevant frequency range (in our case 100MHz) and use it

for all frequencies. The algorithm works well and gradually degrades with the increase in

losses.

As mentioned in the introduction, this algorithm has the potential to increase the infor-

mation rate, but this gain is also subject to the noise immunity of the modes (analyzed in

this work), so that less gain is possible in noisy environments, according to Shannon’s law.

This issue is open for further research.
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