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Abstract

The second order perturbation theory expression for the time dependent
populations and rates of photoinduced electron transfer reactions has been
previously derived by R.D. Coalson, D. G. Evans and A. Nitzan (J. Chem.
Phys. 101, 436 (1994)) and by M. Cho and R. J. Silbey (J. Chem. Phys.
103, 595 (1995)). Here, we adapt these expressions for the study and analysis
of the excitation laser frequency dependence of the time dependent popula-
tions and rates. Our model consists of a molecule with three electronic states,
each supporting a manifold of harmonic internal vibrations of the molecule.
In contrast to previous expectations, we find that in the region of significant
absorption, the photoinduced electron transfer rate is almost independent of
the frequency and the temporal width of the excitation laser. This conclu-
sion implies that control of the excitation rate through the excitation laser
frequency is possible only if external noise destroys the coherence of the exci-

tation process.



I. INTRODUCTION

Photoinduced electron transfer is a three state process [1,2]. A (thermal) molecule in
the ground state is excited by a laser to an electronically excited donor state. This donor
state then interacts with an acceptor state, leading to a transfer of an electron. Electronic
excitation of a molecule is usually accompanied by a weakening of vibrational bonds in the
excited state. We have recently shown [3,4] that, depending on the photoexcitation wave-
length and temporal properties, such a weakening may lead to a cooling of the vibrational
population in the excited state. This cooling may then lead to an exponential reduction of
the electron transfer rate in the activated regime [5,6]. Changing the excitation wavelength
may thus change the electron transfer rate by orders of magnitude, either slowing it down
or speeding it up.

These results [5,6] were derived by using an approximate incoherent two step approach.
First the photoexcitation process was considered to prepare a nascent energy dependent
distribution in the excited donor state. Then this distribution was used as input in the
Golden rule expression for the electron transfer rate. This theory was an approximate one,
valid provided that the electron transfer process is decoupled from the photoexcitation.

Coalson, Evans and Nitzan [7] and Cho and Silbey [8] derived the leading order term in
a perturbation expansion for the photoinduced electron transfer rate. In their applications,
they assumed that the excitation pulse is a delta function in time, that it includes all
excitation frequencies. Here, we will use the formalism of Refs. [7,8] but apply it to study
the photoinduced electron transfer process as a function of laser frequency and pulse shape.
We will compare the results of the present theory, which allows for coherence between the
photoexcitation step and the electron transfer step and the previous theory presented in
Refs. [5,6] which assumed that the two processes are incoherent.

We find in the present study that the coherent process creates a situation in which
the transfer rate of the electron from the locally excited donor to the acceptor state, as a

function of the wavelength, is very similar to the excitation process from the ground state



to the locally excited donor state. As a result, the photoinduced electron transfer rate is
almost independent of the excitation frequency and the temporal width of the pulse.

In Section II we will review the theory and apply it to a model of harmonic vibrational
Hamiltonians for the ground, locally excited donor and acceptor states. A numerical example
will be studied in Section III, and we end with a discussion which attempts to reconcile
the present coherent results with the previous incoherent theory of photoinduced electron

transfer.

II. THEORY OF PHOTOINDUCED ELECTRON TRANSFER

A. Review of perturbation theory results.

Following the formalism presented by Cho and Silbey [8] we assume that we are dealing
with three different orthogonal electronic states representing the ground state (|g >) the
locally excited donor state (|D >) and the acceptor state (]A >). The nuclear Hamilto-
nians for the three electronic states will be denoted h,, hp and hu respectively. The full

Hamiltonian (H) of the system is composed of three parts:
H=H,+V(t)+J (2.1)
where Hj is diagonal in the three electronic states:
Hy=|9g>hy<g|+|D>hp<D|+|A>hy<A|. (2.2)

V(t) is the laser field that induces the excitation from the ground state to the locally excited

donor state:
V(t) = pE(t)cos(wt)|D >< g| + p*E*(t) cos(wt)|g >< D| (2.3)

where p is the dipole operator which may depend on the nuclear coordinates and F(t) is
the time profile of the optical field whose central frequency is w. The final term in the

Hamiltonian (J) induces the electron transfer between the donor and the acceptor states:
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J = AJA>< D|+ A*|D >< A (2.4)

and A is the coupling strength.

As shown in Ref. [8], to leading order in p? the time dependent population of the locally
excited donor state, assuming that the field is turned on at time ¢, is given by the expression:
9 t t/ - -

Pp(t,w) = —— Re | Tre=Phs / dt' [ v v (2.5)
h Zg to to

where =

= o7 Zg 1 the partition function of the ground state nuclear Hamiltonian at the

inverse temperature [3:
Z, = Tre Phs (2.6)

and V; comes from the representation of the field Hamiltonian in the interaction picture

with respect to the zero-th order Hamiltonian [9]:

Vi(t) = ehpt=to)/h ) e=ihg(t=t0)/h [ (1) cos(wt) (2.7)

The rate of change of the population of the acceptor state may be assumed naively (for
a formal justification see Refs. [8,10]) to be linearly proportional to the population of the

locally excited donor state:

dPA(t, w)

T k(t,w)Pp(t,w) (2.8)

where the time dependent rate constant, which is the central quantity to be evaluated in

this paper is given by the expression:

k(t,w) =

Re (i dt" [ dr' [z dr"Tr (e Vi (¢) J{ ()1 (7)) V(") ) ) (2.9)
~ (t/ )

W Re (f5 dv' [ dtTr (e Vi (1) V(7))
and J(t) comes from the interaction representation of the electron transfer coupling term:

Ji(t) = eihali=to)/h g g=ihp(t=to)/n (2.10)

After a short initiation time, k(¢,w) goes to a constant (k(w)) which is well approximated

by allowing t; — —oo and t — oo.



B. Application to a harmonic model

The harmonic model for photoinduced electron transfer is not trivial to solve and allows
for a variety of interesting physical limits. It is also true that for 'medium sized’ polyatomic
(10-40 atoms) at room temperature, the harmonic assumption is valid at least on a qualita-
tive level. Due to the electronic excitation, one may expect that the frequencies in the locally
excited donor state will differ somewhat from those of the ground state. We assume that the
molecule under consideration has N degrees of freedom. Using mass weighted coordinates

¢; and momenta p; the harmonic model will take the form:

N
1
by =35 (3 ) 21
J:
h _i1(2+w22)+ (2.12)
D=, <D p; 4, €Dg .
]:
N
1
ha = Z 2 (pf +wj (g — %‘0)2) + €ag (2.13)

<
Il
—

where €p,, €44 are the energies at the bottom of the well of the locally excited donor state and
the acceptor state, relative to the ground state. One may make this model more general by
allowing the frequencies w; of the acceptor state to differ from the donor state, by introducing
position shifts to the locally excited donor state relative to the ground state and by allowing
for Dushinskii rotations [14] of the normal modes in each of the electronic states. For the
purpose of this paper we will remain with the above simplified model, since it has in it the
essential physics.

For this model, the partition function for the ground state is:
N 1

Zs = H 2sinh(hfw,;/2)

Jj=1

(2.14)

As shown in Ref. [11], the thermal correlation function of the ground state and locally excited

donor state is:

Xpy(t; B) = Tre " ihae ixlo

N

agj(te)a;(t)
: Jl:[l <(b9j<tc) + bj(t))Q — (ng(tc) + aj(t))2>. (2.15)



Here, the a’s and b’s are:

ag;(te) = m (2.16)
bys (1) tanzj;tc) (2.17)
a;(t) = Smu{ﬁ (2.18)
b(t) = tan“gz'd 5 (2.19)
and
t, = —ihf —t. (2.20)

The field is assumed to have been turned on in the infinite past () — —o0). One then
readily finds (within the Condon approximation) that the time dependent population in the

locally excited donor state (Eq. 2.5), at the central excitation frequency w is:

2| ul? 00
Po(t.) = 2 Re [~ dtypy (t"s Bn(t. 1) (2.21)
hZ, 0
where the field function n(¢,t";w) is:
t
Nt 1" w) = / ' E* (¢ E(t' — ") cos(wt') cos(w(t’ — 1)) (2.22)

Computation of the time and frequency dependent population in the locally excited donor
state is thus reduced to two quadratures. If the temporal profile of the field (E£(t)) is a
Gaussian, than an analytic expression is obtained for the field function 7 and one remains
with a single quadrature.

From Egs. 2.7-2.10, one finds with a bit of manipulation, that within the Condon

approximation, the rate of change of population of the acceptor state is:

2
dPAcg?w 2lul* |A|/ dz/ dy/ dx -

Re(x(z —x —y —ihB, —z,y,2)E*(t — 2) E(t — y — z) cos (w(t — 2)) cos (w(t —y — x))) .

(2.23)

The correlation function y is defined as:



X(to,t1,ta,t3) =TT (e_%tohge_%tlhf’e_%chAe_%tShD) : (2.24)

For a harmonic oscillator Hamiltonian, the matrix element of the propagator is known [12]:

1
< aleTwmely >= all) ) * 024y
2mih

ta(t
zaf(b )wy

(2.25)

where a(t) = and b(t) = The correlation function of Eq. 2.24 is thus expressed

1n(wt) tan(wt)

as a four fold Gaussian integral for each vibrational degree of freedom. Defining the 4
integration variables of the j-th degree of freedom as a vector z;, the integral can be put in

the following matrix form

X(t()a tl: t2a t3) = 67%(€Dg(t1+t3)+6Agt2)
! \J

where the boldfaced values are matrices, the underlined values are vectors and the super-

Qg to aDJ(tl)CLD] tg apj t3

(4mih)4

/d:r eh[gﬂf Ajz;+qj0B] zﬁqjoog]

(2.26)

scripts 7" mean transpose. The matrix A; is given by

bi(to) + bi(ts)  —ag(to) 0 —a;(t3)
—agi(to)  bgi(to) +0;(ts)  —a;(ts) 0
A= , (2.27)
0 —a;(ty) bi(ts) +bi(tz)  —aj(ts)
I —a;(t3) 0 —aj(tz)  bi(te) + bi(ts) |
the vector ﬁjr is
E;‘-r =10, 0, bpj(tz) — apj(tz), bp;(t2) — ap;(tz) (2.28)
and Cj is given by
Cj = bp;(t2) — ap;(ls) (2.29)

Completing the square in the exponent of Eq. 2.26, using the fact that A, is symmetric,

and the well known formula [ dze

for the correlation function

—zTPz _

N/ det(P), we obtain the following expression



X(to. t1,t2, t3) = e~ (epg(fitta)teagita)

ﬁ 0gi(t0) ap;(t1)an;(t2)ap;(ts) iz, 3677 8,-0) (2.30)
j=1 det(A;)
The remaining time integrals appearing in Eq. 2.23 which are needed for obtaining the time

and frequency dependent rate must be evaluated numerically.

III. MODEL COMPUTATIONS OF PHOTOINDUCED COHERENT ELECTRON

TRANSFER
A. The model

The theory worked out in the previous section will be applied to the same model studied
in Refs. [5,6]. The system is chosen to have 45 degrees of freedom, divided into three groups -
low, medium and high frequencies. The low frequencies of h, range from 50 to 470 cm ™" with
an equal spacing of 30 cm . The medium frequencies range from 800 cm ! to 1220 cm !
with the same spacing and the high frequencies range from 2000 cm™! to 2700 cm~! with an
equal spacing of 50 ecm™!. These three groups mimic the typical frequency distribution of a
polyatomic molecule. In the locally excited donor state, the frequencies of the low frequency
group are reduced by a constant factor of 0.95, the medium frequency group by the factor
0.98 and the high frequency group by 0.99.

The energy gap between the ground and excited donor states ep, is unimportant (except
for justifying the rotating wave approximation, see below), since it simply sets the scale of
frequencies for the photo-excitation laser. The energy gap between the excited donor and
acceptor states is €4, and is taken to be 0. Thus for the excitation frequency we use the
difference w — €p,. The constants A and p are set to 1.

The position shifts ¢;o in the acceptor Hamiltonian are chosen such that the shift energy
for a given mode %w]?qf-o = zhw;. The parameter x is chosen to be 0 for the medium frequency

and high frequency groups of modes and is 2 [2] for the low frequency group of modes. This

choice is made to assure that we are not in the tunneling limit, where the electron transfer



rate becomes temperature independent. The intramolecular reorganization energy is thus
7,410 cm™t. This implies an activation energy of approximately a quarter of an electron volt
for a symmetric transfer process.

An analysis of the rate of change of the acceptor population, based on Eq. 2.23 shows
that the main contribution to the dz and dx integrals comes from the region where x = z = ¢.
This implies that as ¢ increases the effective integration range adapts accordingly, and we

expect to have a non-zero asymptotic result for (“DATS?“’)

when ¢ — oo.

For numerical reasons it will be convenient to use a Gaussian pulse width for the incident
laser field [E(t) = ﬁe_(t/ 9)°]. The time pulse width o was first chosen to be wide enough so
as not to broaden significantly the absorption spectrum. In Figures 1 to 6, 0 = 0.05 cm (we
use cm as the unit of time, inverse to the frequency unit em™1) , this broadens the spectrum

! which is small in comparison with the absorption spectrum width for this

by only 20 cm™
case, known to be about 200 cm™! [4]. Variation of the width is then studied in Figures 7

and 8.

B. A rotating wave approximation

To further simplify the four fold time integration, we use a rotating wave approximation,
which is well justified, due to the large energy gap between the ground state and the locally
excited donor state. Specifically, by expressing the cos(wt) term of the field (see Eq. 2.7)
as a sum of exponents, one may separate the product of the cos functions in Eqgs. 2.22 and
2.23, into two contributions: half cos of the sum and half cos of the difference. Asymptotic
analysis of Eqs. 2.22 and 2.23 then shows that the term with the half cos of the sum

is very oscillatory, having no stationary point, and so this term may be neglected. The

remaining half cos difference term may be expressed as i of the sum of 2 exponents, one
which contributes around the frequency w = €p,/h the other contributes in the vicinity of
the frequency w = —ep,/h. Since ep, is positive and so is w, the latter term can again be

neglected so that we will use only the first exponent. Using this rotating wave approximation,



the integral in Eq. 2.22 simplifies to:

(t t”'U)) o 1 eiwt//e_;'_/i 1 + eTf t — O.5t" (3 1)
e = o/ 21 0/\/§ '

C. Numerical results

We will examine the time evolution of the frequency dependent rate k(t,w) (cf. Eq. 2.9).
For this purpose it is necessary to compute the population in the locally excited donor state
Pp(t,w) and the rate of change of population in the acceptor state dPa(t,w)/dt. Given the
pulse width of o = 0.05 it suffices to study the time interval [-0.2cm 0.2ci| for several values
of w — wqg. This is shown in Figures 1 to 3 where we plot the time dependence of the locally
excited donor state population (as defined in Eq. 2.21); the rate of change of the acceptor
population (as defined in Eq. 2.23) and the time dependent rate constant (cf. Eq. 2.8),
respectively. All the quantities are computed for three frequencies w — wgy = —280, —80,
and 120 cm™! corresponding respectively to the red edge, the peak and the blue edge of
the absorption spectrum. One notes that all three quantities reach their asymptotic in time
limit by the time ¢t = 0.1 cm.

The frequency dependence of the population of the locally excited donor state is plotted
in Fig. 4 for the four times -0.12, -0.04, 0.04 and 0.2 cm. One notes that the asymptotic in
time limit of the population in the locally excited donor state is up to a constant identical
to the absorption spectrum. As already mentioned and as seen from the Figure, the width
of the absorption spectrum is approximately 200 cm ™. Initially the absorption occurs for a
much larger spread in frequencies, which then narrows with time.

The frequency dependence of the rate of change of the population in the acceptor state
is plotted in Fig. 5. The similarity of these results to those shown for the population in the
locally excited donor state in Figure 4 is striking. The frequency dependence of the rate of
change of the acceptor population is slightly broader than the locally excited donor state

population, but the differences are not very large.
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All of this implies that the asymptotic in time limit of the rate constant is almost
independent of the excitation frequency of the laser in the frequency region for which the
absorption is significant. This central result of this paper is shown in Figure 6, which depicts
the frequency dependence of the rate constant k for the same values of time as in Figures 4
and 5.

The dependence of the photoexcitation process on the incident field time width o is
shown in Figures 7 and 8. In Figure 7 we plot the donor state population, which as expected,
broadens with decreasing temporal width. Figure 8 then presents the frequency dependent
rate constant for a few different values of the temporal width, at the asymtotic time t=0.2cm.

As o increases, the incident pulse is sharper in frequency, hence the frequency region
for which the absorption is significant is narrower, and approaches the 200 cm ! width.
Pp depicted in Figure 7 is calculated after normalizing E(t) so that the peak population is
equal for all o, but k, which is the ratio between dPs/dt and Pp does not depend on any
normalization of the field. The asymptotic value for k(w) in the frequency region for which
the absorption is significant does not depend on ¢ and as mentioned before is also almost
independent of w.

Finally we remark that an estimate for the asymptotic value of the rate constant may
be evaluated rather simply, provided that the ground state and locally excited state Hamil-

tonians are identical and the excitation frequency is w = €py/h. One then finds that:

2A?
n*Z,

kasymptotic =

/ dyTr {ei(y_iﬁ)hge_iyhA} (3.2)
0

Numerical computation of Eq. 3.2 confirms the asymptotic value for k& observed in

Figure 3, for w — wpo=-80 and t>0.1cm, which is about 5x10~°cm™1.

IV. DISCUSSION

A numerical study of the frequency and pulse width dependence of photoinduced electron

transfer in a model harmonic polyatomic model was presented. In contrast to previous
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work, here we used a three state Hamiltonian and within leading order perturbation theory
treated the quantum dynamics exactly. The resulting excitation frequency dependence of
the electron transfer rate differs significantly from the results of a previous study, in which
the photoexcitation of the locally excited donor state was decoupled from the subsequent
electron transfer step. In the latter study [5], we found for the same harmonic Hamiltonian
as used in the present study, that the rate changes by up to two orders of magnitude as
the photoexcitation freqency sweeps through the frequency region where absorption is not
negligible.

The two step approach was based on finding first the nascent energy dependent distribu-
tion in the excited donor state, created by photoexcitation and then using this distribution
as input in the Golden rule expression for the electron transfer rate. This analysis showed
that the rate constant k is smaller for frequencies for which the donor state is cooled, and
higher for frequencies for which the donor is heated. The results presented in this paper
show that this two step approach is incorrect for the isolated molecule. In the absorption
region, the rate is almost independent of the excitation frequency. When the photoabsorp-
tion and the electron transfer processes are treated on the same footing, it would seem that
the intermediate dynamics is not very important.

Does this imply that our former results are wrong? Yes, for the isolated molecule, but not
necessarily for a molecule interacting even weakly with a surrounding bath. One may expect
that if the bath dephases the nascent distribution in the locally excited donor state on a time
scale which is rapid compared to the electron transfer process, then the electron transfer will
indeed be decoupled from the photoexcitation step and the two step model would be correct.
If however, the interaction with the bath leads to an energy thermalization on a time scale
which is faster than the electron transfer time, then this thermalization will again cause the
rate to be independent of the excitation frequency. In other words, sensitive dependence
on the photoexcitation frequency can be expected provided that the interaction with the
bath leads to a fast dephasing time but a slow energy relaxation time as compared with the

electron transfer time.
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Can one show this type of a behavior using a model system? In principle yes, one
must add a bilinear coupling of the vibrational modes of the molecule to a harmonic bath
and then repeat the same type of computation as presented in the present paper, with
an initial thermal distribution of the bath modes. Such a computation has been done for
the photoexcitation process [13], which involved only two electronic states. It is much more
difficult to carry it out for a three state system with 10 to 100 vibrational degrees of freedom,
as in this case it becomes very difficult to obtain a simple analytic expression for the four
point correlation function.

Even after the present study there are a number of questions which should still be
answered. We did not allow for position shifts or Dushinskii rotations of the locally excited
donor state with respect to the ground state. But perhaps even more interesting is what
happens when using a strong field. A theory of strong field coherent photoexcited electron
transfer remains a challenge for future work.

ACKNOWLEDGMENT
This work was supported by grants of the Israel Science Foundation, the US Israel

Binational Science Foundation and the German Israel Foundation for Basic Research.

13



REFERENCES

[1] J. Jortner and M. Bixon, Editors, Electron Transfer - From Isolated Molecules to

Biomolecules, Adv. Chem. Phys., Volumes 106,107, (1999).
2] M. Bixon and J. Jortner, Adv. Chem. Phys. 106, 1 (1999).
[3] G. Gershinsky and E. Pollak, J. Chem. Phys. 107, 812 (1997).
[4] H. Wadi and E. Pollak, J. Chem. Phys., 110, 11890 (1999).
[5] E. Pollak and Y. He, J. Phys. Chem., in press.
[6] E. Pollak and L. Plimak, J. Chem. Phys., in press.
[7] R.D. Coalson, D.G. Evans and A. Nitzan, J. Chem. Phys. 101, 436 (1994).
[8] M. Cho and R. J. Silbey, J. Chem. Phys. 103, 595 (1995).

[9] Note the typographical error in Egs. 6 of Ref. [8]. The correct version of the first equation
is V=Vi(t)|D >< g| + V]'(t)]g >< D| where V;(t)|D >< g is as defined in Eq. 2.7.
The second equation, giving the electron transfer coupling in the interaction picture is

correct as it stands.
[10] M. Cho and R. J. Silbey, J. Chem. Phys. 106, 2654 (1997).
[11] Y.J. Yan and S. Mukamel, J. Chem. Phys. 85, 5908 (1986).

[12] L.S. Schulman, Techniques and Applications of Path Integration (Wiley, New York,

1981).

[13] R. Ianconescu, M. Brik and E. Pollak, New Journal of Physics Focus Issue on 'Brownian

Motion and Diffusion in the 21st Century’ 7, 22 (2005).

[14] R. lanconescu and E. Pollak, J. Phys. Chem. A, 108, 7778 (2004).

14



Figure captions

FIG. 1 Time evolution of the locally excited donor population for several excitation frequencies.

FIG. 2 Time evolution of the acceptor population rate of change for several excitation frequencies.

FIG. 3 Time evolution of the rate constant k& for several excitation frequencies.

FIG. 4 Frequency dependence of the locally excited donor population at different times.

FIG. 5 Frequency dependence of the acceptor population rate of change at different times.

FIG. 6 Frequency dependence of the rate constant k at different times. Note that at the asymp-

totic time, the rate is almost independent of the excitation frequency.

FIG. 7 Frequency dependence of the absorption spectrum for several incident pulse widths.

FIG. 8 Frequency dependence of the rate constant k for several incident pulse widths.
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