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We analyze in this work the energy transfer process of accelerated
charges, the mass fluctuations accompanying this process, and their
inertial properties. Based on a previous work, we use here the dipole
antenna, which is a very convenient framework for such analysis, for
analyzing those characteristics. We show that the radiation process
can be viewed by two energy transfer processes: one from the energy
source to the charges and the second from the charges into the sur-
rounding space. Those processes, not being in phase, result in mass
fluctuations. The same principle is true during absorption. We show
that in a transient period between absorption and radiation the dipole
antenna gains mass according to the amount of absorbed energy and
loses this mass as radiated energy. We rigorously prove that the gain
of mass, resulting from electrical interaction has inertial properties in
the sense of Newton’s third low. We arrive to this result by modeling
the reacting spacetime region by an electric dipole.

Key words: radiation resistance, self force, energy transfer, charges,
antenna theory, off-mass shell response.
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1. INTRODUCTION

The common belief that an accelerating charge always radiates energy
is reviewed. There are two Lienard-Wiechert potentials: one retarded
and one advanced. For reasons of causality, the advanced solution
is usually disregarded. It is considered as a field which “knows” the
future motion of a charged particle. But another way of interpreting
the advanced field is to define it as the field which establishes the future
motion of the particles.

Let us imagine a stationary charged particle, and some remote
source of radiation, distributed spatially in such a way as to create
radiation of the same pattern as a dipole antenna, but propagating
inwards towards the particle. May such a field correspond exactly to the
advanced field of one charged particle? The answer here is no, because
the advanced field contains the Coulomb component, and there is no
way to create a Coulomb field from a far distributed source (because
of the Gauss law). In other words it is obvious that the advanced field
cannot create the state of a single charged particle.

But if we modify the above question: may such a field corre-
spond exactly to the advanced field of a neutral distribution of charged
particles? Such a distribution is Coulomb free, and therefore the an-
swer here is yes. The best example of such a charge distribution is an
antenna. Also a single electric dipole is a good approximation to such
a charge distribution. And one may state that as long as the advanced
field does not interact with the above charge distribution, there is no
charge (because the interaction domain is neutral). The charge be-
comes evident during the interaction. In this case one may state that
the advanced field creates the charges. Or, in other words the advanced
field converges into the future space-time domain of the charges, and
creates a new body defined by the charge distribution.

It is to be mentioned that considering the interaction region
as totally neutral before the interaction occurs, does not reduce the
generality of the problem, because we assume the universe is neutral,
and hence every charge in nature has its opposite sign counterpart.
Therefore every space-time region is neutral on a sufficiently large scale.
In this work we consider the interaction region to be large enough to
validate the neutral system assumption; alternatively, we may restrict
ourselves to systems which are locally neutral.

Where does this energy go now? If this charge distribution
antenna is connected to a resistor which equals the radiation resistance
of the antenna (i.e. impedance-matched), the energy transforms into
heat. If the antenna is in open circuit (or shorted), the energy is
radiated back into the space, on the same radiation pattern, and we will
show that during the period of interaction, the antenna gains inertial
mass.

This energy radiated back into the surrounding space will be rep-
resented by the retarded field, i.e., the field caused by the past charged
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Fig. 1. Advanced - incoming energy and retarded outgoing energy.

distribution, or caused by the past (electric) existence of the body, as
shown in Fig. 1.

So interpreting the advanced field as an incoming energy (ac-
cording to the definition of the advanced Green’s function), and sym-
metrically the retarded field as an outgoing energy, and knowing that
both fields depend on acceleration of charges, we may generalize the
statement: “an accelerating charge always radiates energy,” to: accel-
erating charges always radiate or absorb energy. There are two novel
ideas here. One is that acceleration may indicate radiation or ab-
sorption, i.e., interaction [1], and the second is that the interaction is
a collective process during which charges accumulate energy from a
source and release it to a destination, and not a single charge process
by which a charge “radiates its energy away”.

The known expression for the radiated power of a charged par-
ticle is P = 2/3q2aµaµ. For an on-shell particle, aµvµ ≡ 0, therefore
we have the identity aµaµ ≡ −ȧµvµ. So the radiated power could
be expressed as P = −2/3q2ȧµvµ. Interactions always occur slightly
off-shell [2] (example: if gravitation acts like acceleration, and under
the equivalence principle gravitation changes the metric, acceleration
should change the metric too), so during interactions the above on-shell
identity (aµaµ = −ȧµvµ) is not exactly satisfied.

One should therefore ask which one of the two expressions rep-
resents better the radiated power P? It comes out that radiated power
cannot come from the charge itself, but from some source which boosted
the charge (for example a charge passing through a static electric field
will accelerate, by absorbing energy from the static field, and radiate
it). We will show that while aµaµ is responsible for the radiation, −ȧµvµ
is responsible for the energy absorption from the source, and therefore
the difference between them, aµaµ + ȧµvµ, represents a transient mass
fluctuation.

In Sec. 2 we present the main results of a previous work [3], in
which we analyzed the physical meaning of the self force on a charge
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which is part of a radiating antenna. This self force was associated
with the radiation resistance of the antenna. We will bring here also
some new insights and interpretations.

In Sec. 3 we develop the self force on a charge which is part of
a radiating or absorbing antenna. We will show here that while for the
radiating case, the self force generates the radiation resistance, for the
impedance-matched absorbing antenna the self force is responsible for
the dissipated heat.

In Sec. 4 we present an open circuit antenna which receives a
short energy pulse from the surrounding space and radiates it back.
We show that during the interaction process, the antenna gains an
addition of inertial mass which equals the received energy, and loses
the additional mass after radiation.

In Sec. 5, we explicitly show how the above mass gain has inertial
properties.

2. SELF-FORCE ACTING AS RADIATION RESISTANCE

In a previous work [3] it has been shown that the so called “self force”
Fself = (2/3)q2ȧ is responsible for the radiation resistance of an an-
tenna. We will bring in this section, for convenience, the main results
of this work, plus some new interpretations.

The following problem, of a driven short dipole antenna of length
L, was formulated:
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Given the fact that any time dependence can be expanded in a
Fourier series of functions, we consider the harmonic time dependence,
as shown in Figure 2. But the results we obtained for the fields are
correct in general, and we use the harmonic dependence only when cal-
culating the radiation resistance, which is indeed frequency dependent.

The z dependence of the current is disregarded, the antenna
being short.

It comes out therefore that the motion parameters (velocity,
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acceleration, and its derivative) of the charges have the form

v = v0 sin(ωt), a = ωv0 cos(ωt), ȧ = −ω2v0 sin(ωt). (1)

By describing the conductor as a continuum of single charges, as
in Figure 3, we examined the forces on the “test charge” B, as a result
of a disturbance produced on charge A. This disturbance is expressed
in terms of the motion parameters of charge A, i.e., the acceleration
and its derivative.

The motion parameters are connected to the current via:

I = vρ = qv/∆z, (2)

where I is the electrical current and ρ is the free charge density of the
conductor. The discretization of the continuum into single charges is
done by defining discrete charges of value q at distance ∆z so that
q = ρ∆z, as in Figure 3. Furthermore, the velocity of the charges in a
conductor is extremely small (order of magnitude of 10−4m/sec).
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Fig. 3. Close-up view of the conductor.

The result obtained for the disturbing field was

Ez = q

(
1

∆z2
− a

∆z
+

2

3
ȧ

)
. (3)

It was shown [3] that the ȧ term in (3), being in opposite phase with
the velocity of the charge, and the velocity being in phase with the
current, is the only term in (3) representing the damping force for the
source.

The damping force is

Fself = (2/3)q2ȧ; (4)
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therefore the “self” work (or power) is

Pself = −Fselfv = −(2/3)q2ȧv, (5)

and the radiation resistance, defined as Pself/I
2, using (1) and (2),

becomes

R = (2/3)(2π)2(∆z/λ)2. (6)

The magnitude ∆z = L represents the short dipole antenna
length, and the wavelength λ = 2π/ω.

Another way to look at R is to define the “self” voltage as an
integral on the “self” field (2/3)q2ȧ:

Vself = −
∫
Eselfdz ' −Eself∆z = −(2/3)q2ȧ∆z (7)

to obtain R as Vself/I.
It is remarkable that the “self force,” calculated with the micro

parameters, shows up in macro to have the meaning of a damping
power which is responsible for the radiation resistance.

Up to here, we have given the main results of [3]. Let us now
compare between the “self power,” which was shown to act as damping
power, and the radiated power.

The power radiated by a (low velocity) charge is

Prad = (2/3)q2a2. (8)

The “self power” equals identically I2R, so this is the power the
current source pumps. Therefore, it represents the power generated by
the current source, and pumped into the charges. On the other hand,
the radiated power represents the power which the charges release into
space.

Using (1), we see that

Pself = (2/3)q2(ωv0)2 cos2(ωt) andPrad = (2/3)q2(ωv0)2 sin2(ωt).

We remark that the energy over an entire cycle 2π/ω of both powers
is identical, so the energy is conserved in average, however there is
a phase shift between them, suggesting that the charges accumulate
energy, before radiating it into space.

Using (5) and (8), the power accumulated by the charges is

W = Pself − Prad = −(2/3)q2(a2 + ȧv)

= −(2/3)q2(v0ω)2 cos(2ωt) ≡ −P0 cos(2ωt),
(9)
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where P0 is easily shown to be equal to RI2
0 and is also the peak value

of Pself or Prad (which are equal up to a phase).
It is generally assumed that mass shell remains fixed classically,

and varies only in quantum mechanics; we disagree because the on
shell condition vµvµ = −1 always imposes constraints which might
contradict reality. For example it imposes the constraint F µvµ = 0 for
any force F µ = maµ in Newton’s law.

Therefore, interacting particles should not be completely on-
shell [2], so we will interpret (9) by considering the charges slightly
off-shell:

vµvµ = −1 + v2. (10)

The reason for choosing the off-shell factor v2 will become clear
later, and it is to be mentioned that v2 � 1, as we stated already.
Taking the derivative of the LHS with respect to the proper time and
the derivative of the RHS with respect to the time (supposing time and
proper time are almost equivalent), we obtain

aµvµ = va, (11)

where a = v̇. By taking again the derivative, we find

ȧµvµ + aλaλ = a2 + ȧv. (12)

The relativistic expression for the self force F µ
self = (2/3)q2(ȧµ−

aλaλv
µ), multiplied by the particle’s velocity vµ results in identically 0

on-shell, but in our case it gives

F µ
selfvµ = (2/3)q2(ȧµvµ − aλaλvµvµ) ' (2/3)q2(a2 + ȧv). (13)

The RHS of (13) has been obtained using (12), and the fact that
v � 1.

We remark that F µ
selfvµ = −W in (9). The mass of a radiating

antenna therefore is

m(t) = −
∫
F µ

selfvµdτ ' −(2/3)q2
∫

(a2 + ȧv)dt

= −(2/3)q2av +M = −Peff
ω

sin(2ωt) +M,
(14)

where M is the integration constant and represents the interaction-free
mass of the antenna, and Peff = P0/2 represents the average radiated
power.

It is obvious that the free mass is preserved in average, because
we dealt here with a stationary case of harmonic signal for which energy
is pumped into the charges and almost immediately radiated into the
space.

The mass variation will be further examined in Section 4, for a
short excitation pulse.
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3. ANTENNA ABSORBING ADVANCED FIELDS
AND RADIATING RETARDED FIELDS

The formulation here is quite similar to this in [3], and it is shown in
Figure 4.
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Fig. 4. Radiating or absorbing dipole antenna.

As we saw, the “self” retarded field of a charge, acting on its
neighbor, generates for a radiating antenna a “self” voltage which,
divided by the current results in the radiation resistance.

It is therefore natural to analyze the “self” advanced field of a
charge, acting on its neighbor, for an absorbing antenna.

We therefore derive the the retarded and advance field on charge
B, by the motion of the disturbed charge A.

The near field of a charge is expressed by [3]

Ez =
q

[Rµvµ]2
ret/adv

, (15)

where Rµ is the null vector from charge A to charge B, given by

Rµ = (−tA(τ), 0, 0, zB − zA(τ)). (16)

The null vector condition is imposed by

t2A = |zB − zA(tA)|2, (17)

and hence

tAret/adv = ∓(zB − zA(tA)). (18)
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Expressing vµ = γ(1, 0, 0, vA(τ)), and knowing that γ ' 1, we
may express Rµv

µ as

Rµv
µ = ∓(zB − zA)(1∓ vA). (19)

The position zA of charge A may be expanded in series of tA

zA(tA) = zA0 +
1

2
at2A +

1

6
ȧt3A, (20)

where zA0 , a and ȧ are the position, acceleration and its derivative of
charge A at t = 0, respectively, and we chose the reference frame so
that the velocity is 0 at t = 0.

We may calculate now tA which satisfies the null vector condi-
tion. By putting (20) in (18), we obtain

zB − zA(tA) = ∆z0 −
1

2
at2A −

1

6
ȧt3A = ∓tA, (21)

where ∆z0 ≡ zB− zA0 . The the null vector condition may be rewritten

∆z0 ± tA
(

1∓ 1

2
atA ∓

1

6
ȧt2A

)
= 0. (22)

This may be solved in first approximation by tAret/adv = ∓∆z0.
By setting the first approximation solution into (22), we obtain the
retarded/advanced solution for tA

tAret/adv =
∓∆z0

1 + 1
2
a∆z0 ∓ 1

6
ȧ∆z2

0

. (23)

Using (21) in (19), we obtain

Rµv
µ = tA(1∓ vA). (24)

We may expand vA:

vA = atA +
1

2
ȧt2A (25)

and obtain

Rµv
µ = tA ∓ at2A ∓

1

2
ȧt3A. (26)
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Using (23), we expand tA, t2A, and t3A in powers of ∆z0, keeping
terms up to ∆z3

0 :

tA = ∓∆z0

(
1− 1

2
a∆z0 ±

1

6
ȧ∆z2

0 +
1

4
a2∆z2

0

)
, (27)

t2A = ∆z2
0(1− a∆z0), (28)

t3A = ∓∆z3
0 . (29)

Setting those values into (26), we obtain

Rµv
µ = ∓∆z

(
1 +

1

2
a∆z ∓ 1

3
ȧ∆z2 − 3

4
a2∆z2

)
. (30)

Here we replaced ∆z0 by ∆z, which is the average distance be-
tween charges, as described in Figure 3.

Putting now (30) into (15), we obtain

Ez = q(
1

∆z2
− a

∆z
± 2

3
ȧ+

9

4
a2). (31)

Dealing with harmonic excitation, ȧ = v̈ ∼ ω2v, and (v̇)2 ∼
(ωv)2. Having v smaller by 11 orders of magnitude than light velocity,
v̇2 is completely negligible relative to v̈, for any frequency, and we find

Ez = q

(
1

∆z2
− a

∆z
± 2

3
ȧ

)
, (32)

where the upper sign refers to retarded and the lower sign refers to
advanced (compare with (3)).

The first term q/∆t2 is always cancelled by the force of the
“other” neighbor, it therefore can be completely ignored.

The third term is identical to what is considered to be the field
which creates the retarded/advanced self-force of a charge, but here it
was derived as the force on a charge, due to a disturbance on a neigh-
boring charge. As we shall see, it is the only term which responsible
for the radiation/absorption resistance (which is a local phenomenon
on the world line).

We will call the last 2 terms of (32) Eself , obtaining

Eself = q

(
− a

∆z
± 2

3
ȧ

)
. (33)
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The potential difference V on a wire segment of length ∆z, re-
sulting from Eself , will be called as the “self” tension (or “self” voltage)
and is calculated from

V = −Eself∆z. (34)

The magnitude ∆z = q/ρ according to the discretization of the
charge distribution, so that we get, from (33) and (34),

V = ∓(q2/ρ)(2/3v̈) + qv̇. (35)

According to (2),

v̇ =
1

ρ

∂I

∂t
, v̈ =

1

ρ

∂2I

∂t2
. (36)

Dealing with harmonic excitation (see (1)), ∂/∂t is like multi-
plication by ω (up to a 900 phase). We therefore may write (35), using
(36),

V = ∓2

3

(
q

ρ

)2
∂2I

∂t2
+
q

ρ

∂I

∂t
= ∓2

3
∆z2∂

2I

∂t2
+ ∆z

∂I

∂t
. (37)

The power radiated/absorbed by the segment ∆z is ∆P = V I
and given by

∆P = ∓2

3

∂2I

∂t2
I∆z2 +

∂I

∂t
I∆z. (38)

According to (1), ∂2I
∂t2

= −ω2I. The constant ratio between
∂2I/∂t2 and I means that the current is “in phase” with its second
derivative, and therefore the first part of ∆P in (38), integrated over
time, represents radiated or absorbed energy. However, the multipli-
cation of I by ∂I/∂t has the form of cosω(t) sinω(t) and therefore the
second part of ∆P represents a reactive power, which results in zero
energy after integrating on an integer number of time cycles. The reac-
tive power represents power which is returned to the source each time
cycle. We are therefore interested in the first term of ∆P in (38).

We therefore obtain

Pself−ret/adv = ±2

3
ω2(I∆z)2 = ∓(2/3)q2ȧv (39)

(compare with (5)). The radiation/absorption resistance is obtained
from Pself−ret/adv/I

2 or by the first part of V in (34) divided by the
current I:

Rrad/abs = ±(2/3)(2π)2(∆z/λ)2. (40)
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The radiation resistance is the same as in (6), and the absorption
resistance is obviously its negative counterpart.

This is because a negative resistance −R through which a cur-
rent I flows is completely equivalent to a current source I with an inter-
nal resistance R. If we connect a load resistance of the same value R to
this current source, as in the right side of Fig. 4, we get an impedance-
matched absorbing antenna.

We have proven here that the advanced field behaves like an
absorbed field, and knowing that the Poynting vector associated with
the advanced field is of the same size and opposite direction as the
Poynting vector associated with the retarded field, we may clearly state
that the absorbed power is

Pabs = −(2/3)q2a2 (41)

(cf. (8)).
From here on we may follow the same arguments from Sec. 2,

from (8) to (14), and get the analogous results for an absorbing an-
tenna, which are basically the results for a radiating antenna, with
sign changed.

The power accumulated by the charges is

W = Pself−adv − Pabs = (2/3)q2(a2 + ȧv)

= (2/3)q2(v0ω)2 cos(2ωt) ≡ P0 cos(2ωt),
(42)

where P0 is the peak value of Pself or Pabs (which are equal up to a
phase).

The mass of an absorbing antenna comes out to be

m(t) = −
∫
F µ

selfvµdτ ' (2/3)q2
∫

(a2 + ȧv)dt

= (2/3)q2av +M =
Peff
ω

sin(2ωt) +M,
(43)

where M is the interaction-free mass of the antenna, and Peff = P0/2
represents the average absorbed power.

We see that the mass of an antenna is expressed via the integral
on the self force of its off-shell charges m(t) = −

∫
F µ
selfvµdτ , and the

difference between the radiating and absorbing cases is the sign. This
sign difference is associated with the fact that F µ

self−adv = −F µ
self−ret.

4. THE TRANSIENT FROM ABSORPTION TO
RADIATION

We saw in the Secs. 2 and 3 that the mass of an antenna radiating
or absorbing an harmonic signal, oscillates harmonically at twice the
radiating/absorbing frequency.
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The harmonic signal has no local time properties, hence the
above results cannot describe transients between emission and absorp-
tion.

We analyze here the case of an antenna of whose discretized
charges have a constant acceleration az for a short period of time 2∆t.
As we saw in Section 3, acceleration can indicate radiation or absorp-
tion, so we will consider the case for which in the first half of the
acceleration duration (time from −∆t to 0) there is absorption, and in
the second half of the acceleration duration (time from 0 to ∆t) there
is radiation.

The retarded/advance field due to a discretized charge in Figure
3 at the location of its neighbor is given by the last 2 terms in (32):

Ez = q

(
− a

∆z
± 2

3
ȧ

)
, (44)

where the upper sign refers to retarded and the lower sign refers to
advanced, and the first term in (32) q/∆t2 is always cancelled by the
force of the “other” neighbor.

The force on the neighbor charge q1 will therefore be

Fz = q1Ez = q1q
(
− a

∆z
± 2

3
ȧ
)

= −q1q
∆z

a
(
1∓ (2/3) ȧ

a
∆z
)
≡Ma

(
1∓ (2/3) ȧ

a
∆z
)
,

(45)

where the lower sign refers to the absorption time interval (−∆t to 0),
and the upper sign to the radiation time interval (0 to ∆t).

Here we defined the mass M as minus the product of two neigh-
boring charges over the distance between them. We shall see in Section
5 that such a configuration of a pair of charges has inertial properties
of magnitude −q1q/∆z, hence when the charges are opposite in sign
they behave like a positive mass, and vice versa.

Actually our model in Figure 3 considered equal (free) charges
in a conductor, but we know that for each negative charge there is a
positive counterpart, so we will consider for now M in (45) as positive:
M ≡ q2/∆z.

According to (45), the dynamic mass is

m(t) = M

(
1∓ (2/3)

ȧ(t)

a(t)
∆z

)
. (46)

We want to investigate the behavior of the dynamic mass change
during the interaction, i.e., from time −∆t to ∆t. For −∆t < t < 0,
absorption occurs; therefore the lower sign has to be used, and for
0 < t < ∆t the upper sign has to be used.
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A fixed acceleration az means that if we go to the rest frame of
the particle by Lorentz transformation at any proper time, and measure
the acceleration in this frame, we always get the same result az. Under
this definition, ȧ is not identically 0. A fixed accelerated motion, in
the z direction may be parametrized in the following way:

vµ(τ) = (cosh(azτ), 0, 0, sinh(azτ)), (47)
aµ(τ) = az(sinh(azτ), 0, 0, cosh(azτ), ) (48)

ȧµ(τ) = a2
z(cosh(azτ), 0, 0, sinh(azτ)), (49)

where the components of the 4-vectors are (t, x, y, z).
This low order approximation maintains the mass shell con-

straint [2] vµvµ = −1, neglecting the v2 correction noted in (10). But
we shall see below, that this off-shell term will reappear.

In the framework of a conductor, we showed [3] that the velocity
of the charges is of order of magnitude of 10−4m/sec, hence v � 1, so
we have to use the limit of (47)-(49) around the apex, up to first order
in τ (note that for v � 1, t ' τ):

vµ(τ) ' (1, 0, 0, azt), (50)
aµ(τ) ' az(azt, 0, 0, 1), (51)

ȧµ(τ) ' a2
z(1, 0, 0, azt). (52)

We remark that (50)-(52) satisfy the off-shell condition vµvµ =
−1 + v2 defined in (10).

We divide now the z component of ȧµ by the z component of aµ,
substitute it into (46), and get, for the absorption period −∆t < t < 0,

m(t) = M(1 + (2/3)a2
zt∆z), −∆t < t < 0 (53)

and, for the radiation period 0 < t < ∆t,

m(t) = M(1− (2/3)a2
zt∆z), 0 < t < ∆t. (54)

During the absorption period, there is a mass gain of
(2/3)Ma2

zt∆z and, using M = q2/∆z, the mass gain becomes

m(0)−m(−∆t) = (2/3)q2a2
z∆t ≡ Pabsorbed∆t; (55)

similarly, during the radiation period there is a mass loss, resulting in
a negative mass gain

m(∆t)−m(0) = −(2/3)q2a2
z∆t ≡ −Pradiated∆t. (56)

We recognize in the expressions for the gain and loss of mass the
absorbed and radiated energies, respectively, exhibiting energy conser-
vation.
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5. INERTIAL BEHAVIOR OF CHARGES

The analysis, done up to this point, was based on the discretization of
an antenna into equally spaced charges, attributing to a given charge
micro parameters (v, a, ȧ), connected to the antenna macro parameters,
like I and V . We eventually considered for a short antenna, the distance
between 2 charges ∆z, as a representative length of the antenna.

With the aid of this model, we have succeeded to prove that
the retarded field behaves like a radiated field and the advanced field
behaves like an absorbed field. We have shown that during radiation or
absorption the mass of the antenna (defined as M ≡ q2/∆z), oscillates
at twice the frequency.

When the antenna absorbs an energy pulse, the mass increases
according to the absorbed energy, and during the re-radiation of the
pulse, the mass decreases.

In the current section we wish to make a rigorous analysis to
show that an electrically reacting spacetime region has inertial prop-
erties. We model this reacting spacetime region by an ideal electric
dipole. We define here an ideal dipole, as two equal and opposite
charges at a distance d, so that for any possible acceleration a of this
system:

ad→ 0. (57)

Note that ad is unitless, therefore condition (57) is well defined.
It means that the distance between the charges is short enough for the
largest possible acceleration that may be considered.

The formulation is based on Fig. 5

-z

6
x

�
�
�
�	
y

w
w
q2

q1

6

?
d -az

Fig. 5. Accelerating dipole.

In Fig. 5 the charges appear as q1 q2 but we will be eventually
interested in the case of q = q1 = −q2. The charges are bound, and
they move together along the z axis.
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We calculate the field on q2, due to q1, in an inertial frame in
which q2 is at rest.

The most general expression for the electromagnetic tensor of a
moving charge q is given by [4]

F µν = ± q

Rσvσ

d

dτ

(
Rµvν −Rνvµ

Rσvσ

)
, (58)

where ± refer to retarded and advanced respectively, Rµ(τ) ≡ Xµ −
Zµ(τ), Xµ being the observation point and Zµ(τ) the particle’s world
line. Expression (58) is calculated at τ which satisfies

RσRσ = 0. (59)

Equation (59) always has two solutions for τ ; the earlier corre-
sponds to retarded and the later to advanced.

The values we shall insert in (58) for a constant acceleration az
along the z axis are

Zµ = a−1
z (sinh(azτ), 0, 0, cosh(azτ)), (60)

Xµ = (0, d, 0, a−1
z ), (61)

because the observation point is defined as the location of q2 when it
is at rest, i.e., at the apex of the hyperbola. Hence

vµ = (cosh(azτ), 0, 0, sinh(azτ)) (62)

and therefore

Rµ = a−1
z (− sinh(azτ), d, 0, 1− cosh(azτ)). (63)

We thus obtain the tensor

Rµvν =


−a−1

z sinh(azτ) cosh(azτ) 0 0 −a−1
z sinh2(azτ)

d cosh(azτ) 0 0 d sinh(azτ)

0 0 0 0

a−1
z (1− cosh(azτ)) cosh(azτ) 0 0 a−1

z (1− cosh(azτ)) sinh(azτ)

 .

(64)
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The tensor Rνvµ is the transpose of (64), so we obtain

Rµvν −Rνvµ =


0 −d cosh(azτ) 0 a−1

z (1− cosh(azτ))

d cosh(azτ) 0 0 d sinh(azτ)

0 0 0 0

−a−1
z (1− cosh(azτ))−d sinh(azτ) 0 0

 .

(65)

The scalar Rσvσ is

Rσvσ = a−1
z sinh(azτ). (66)

Dividing (65) by (66) and taking the derivative with respect to
τ , we find

d

dτ

Rµvν −Rνvµ

Rσvσ
= az


0 daz

sinh2(azτ)
0 −1

2 cosh2(azτ/2)

−daz
sinh2(azτ)

0 0 0

0 0 0 0

1
2 cosh2(azτ/2)

0 0 0

 . (67)

So we obtain the EM field tensor

F µν = ± q1a
2
z

sinh(azτ)


0 daz

sinh2(azτ)
0 −1

2 cosh2(azτ/2)

−daz
sinh2(azτ)

0 0 0

0 0 0 0

1
2 cosh2(azτ/2)

0 0 0

 , (68)

which, on using the equality sinhx ≡ 2 cosh(x/2) sinh(x/2), simplifies
to

F µν = ∓ q1a
2
z

sinh(azτ)2 cosh2(azτ/2)


0 −daz

2 sinh2(azτ/2)
0 1

daz
2 sinh2(azτ/2)

0 0 0

0 0 0 0

−1 0 0 0

 .

(69)
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Now we have to find the τ that satisfies (59):

RσRσ = d2 + 2a−2
z (1− cosh(azτ)) = 0. (70)

On using the equality cosh(x) − 1 ≡ 2 sinh2(x/2), we find that
sinh2(azτ/2) = (daz)

2/4; and τ is found by solving (70) for sinh(azτ):

sinh(azτret/adv) = ∓daz
√

1 + (daz/2)2. (71)

We remark that both retarded and advanced fields are identical
for our case, because by setting (71) in (69), the signs cancel.

We obtain, from these results, the EM tensor field

F µν =
q1az

2d
[
1 + (daz/2)2]3/2


0 − 2

daz
0 1

2
daz

0 0 0

0 0 0 0

−1 0 0 0

 . (72)

We calculate now the 4-force on the charge q2. The velocity v of
charge q2 is zero in our reference frame defined before, so the 4-velocity
vµ is (1, 0, 0, 0). The force on q2 is then

f ν2 = q2vµF
µν =

−q1q2az

2d
[
1 + (daz/2)2]3/2 (0,− 2

daz
, 0, 1

)
. (73)

Similarly, if we calculate the force on the charge q1, due to q2,
we just have to reverse the x axis; so we obtain

f ν1 =
−q1q2az

2d
[
1 + (daz/2)2]3/2 (0, 2/daz, 0, 1

)
. (74)

The force on the whole system is therefore

f ν = f ν1 + f ν2 =
−q1q2az

d
[
1 + (daz/2)2]3/2 (0, 0, 0, 1

)
. (75)

The only component of the force is in the direction of the accel-
eration z:

fz =
−q1q2az

d
[
1 + (daz/2)2]3/2 . (76)
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For an ideal dipole, according to (57), daz → 0, and the force is
proportional to the acceleration:

fz =
−q1q2az

d
≡Maz. (77)

We defined here M := −q1q2/d; and dealing with q = q1 = −q2,
M comes out q2/d and is a positive quantity.

We remark that the configuration defined in Fig. 5 cannot radi-
ate, and we see that it behaves like a simple constant mass. That
is why we did not have to bother whether to use retarded or ad-
vanced field, and both fields gave the same result (see remark af-
ter (71)). Another way of understanding this is by the fact that
F µ
self = (2/3)q2(ȧµ − aλaλvµ) ≡ 0 for the world line described in (60).

Now, does this mass represent inertia? Yes, because if some
obstacle is put in the way of the accelerating body, this obstacle will
“feel” the force F = Maz, exactly as it will feel it for any non-electrical
body of mass M. The obstacle will be hit by an accelerating body, and
will absorb the force azq

2/d, hence the dipole has inertial properties of
magnitude q2/d.

However, the problem as exposed above, describing an accelerat-
ing dipole is not completely defined, because we must say what caused
it to accelerate. But we can look at it from a different point of view:
suppose we observed a static dipole from a frame accelerating in the
−z direction.

Any mass M that we observe from an accelerating system will
appear to us as being driven by an imaginary force (we call it imaginary
aposteriori, knowing we are not in an inertial system, but we observe it
as a real force). In other words, if the dipole would not have EM mass,
we would not have observed the force. And again, we can measure
this mass by dividing the imaginary force F , in our case azq

2/d by the
acceleration az, and obtain M = q2/d.

6. DISCUSSION

The purpose of this work was to clarify the energy transfer process
between charged bodies and the world surrounding them.

We showed here that the “self” retarded field of a charge, act-
ing on its neighbor, generates for a radiating antenna a “self” voltage
which, divided by the current results in the radiation resistance (R),
and similarly the “self” advanced field of a charge, acting on its neigh-
bor, generates for an absorbing matched antenna a “self” voltage which,
divided by the current results in minus the radiation resistance (−R),
i.e. acts like current source with internal resistance R.

We showed also that the radiation process of an antenna con-
sists of two energy transfer processes: energy transfer from the current
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source to the charges (expressed by −2/3q2ȧµvµ), and energy transfer
from the charges to the surrounding space (expressed by 2/3q2aµaµ).
Those two processes are not in phase, and therefore the mass of the
antenna fluctuates at twice the radiation frequency.

Similarly, the absorption process of an antenna consists of two
energy transfer processes: energy transfer from the surrounding space
to the charges, and energy transfer from the charges to the resistive
absorber. In this case the mass of the antenna fluctuates at twice the
absorption frequency, too.

In a transient period between absorption and radiation, we
found out that during absorption the mass of the antenna increases
by the amount of energy absorbed, and during the radiation period the
mass of the antenna decreases by the amount of energy radiated.

Another interesting conclusion is that bound charges, always
appearing in nature as dipoles, are a manifestation of energy (inertia).

In a philosophical way, one may say that charge itself can be
considered as a manifestation of the interaction process. This may be
understood in the following way. From a macroscopic point of view,
an antenna is completely neutral in the absence of interaction. The
charges of course exist all the time, but they annihilate each other.
During the interaction, the charges form dipoles, and appear as mass
fluctuations.
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