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Multiconductor communication is widely used in electronic applications for fast

data transfer between different devices. The most common multiconductor transmis-

sion media are Cat 6 Ethernet cables, flat cables and backplanes. In all applications,

the data is transferred differentially between pairs of conductors, so that roughly the

number of transmitted signals is half the numbers of conductors. Physically, between

N+1 conductors it is possible to transmit N signals and the reason for not doing so is

the huge crosstalk and return loss that would arise when transmitting so many sig-

nals. The current work suggests an algorithm for transmitting the maximum number

of possible signals without crosstalk or return loss.
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I. INTRODUCTION

In all the applications of fast data transmission via multiconductor transmission lines

(MTL), like flat cables, backplanes, etc., the signals are transmitted differentially between

pairs of conductors, so that the number of transmitted signals is half the number of conduc-

tors. Under those conditions, the manufacturers specify the crosstalk between signals and

the matching loads.

One remarks that MTL cannot be matched exactly by individual loads between signals

[1–5], unless the differential lines would be mutually isolated. The typical crosstalk of around

−20 dB [9] shows that they are not isolated, and hence some return loss must exist.

In addition, we remark that between N + 1 conductors one can transfer N independent

signals, which means that for large N , the data transfer applications transmit about half

of the maximum possible number of signals, hence half of the data rate. Clearly, if one

would transfer the full number of possible signals, the crosstalk (and the return loss) would

increase substantially.

It is to be mentioned that the software applications we use become more and more

complex and require more powerful computers, which require faster data transfers, and

we may observe how we are periodically offered higher and higher internet speed. Hence

increasing the number of transferred signals to the maximum is an issue of interest.

The current work suggests a method to transfer the maximum number of possible signals,

i.e. N signals on MTL of N +1 conductors without crosstalk or return loss. This is achieved

by using a pre-processing unit at the input of the transmission line and a post-processing

unit at the line output. Certainly, the crosstalk always exists on the MTL itself, but the

whole system including the MTL and the processing units is crosstalk free. We shall explain

the theory and show simulation results. In this work we consider lossless lines, but the

method can be generalized to lossy lines with some degradation.

The work is organized as follows. The first sections explain the theory: in section II we

give the description of a MTL by scattering (S) matrix, and the properties of this matrix and

in section III we explain how to derive a generalized ABCD matrix from the S matrix. In

section IV we show the ABCD description of the MTL and the properties of the generalized

ABCD matrix, the connection to the characteristic impedance matrix of the line, and how

the system simplifies for homogeneous media. In section V we show how to get the S matrix
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from the generalized ABCD matrix, and in section VI we explain the general scheme for

a crosstalk and return loss free system. In section VII we show simulation examples of

crosstalk and return loss free transmissions: we present one example in homogeneous media

and one example in non-homogeneous media. We make use in this section of the theoretical

background from the previous sections.

The work is ended by some concluding remarks.

Note: through this work, the unit matrix is noted by U , to avoid confusion with current

vectors I. All the matrix transpose operations are transpose and no conjugate.

II. DESCRIPTION OF THE MTL BY SCATTERING MATRIX

We shall define the scattering matrix of the MTL for equal port impedances R. The near

end ports are numbered 1,2, .. N and the far end ports are numbered N + 1, N + 2, .. 2N .

The forward voltages into the ports are V +
1 , V +

2 , .. V +
N , V +

N+1, V +
N+2, .. V +

2N and will be

grouped as V +
ne at the near end and V

+
fe at the far end. We use the same grouping for the

backward voltages: V −
ne and V

−
fe .

The scattering matrix S describes the connection between outgoing voltage waves and

incoming voltage waves [5–8], provided all port impedances equal each other, which is our

case. We group it into 4 submatrices Snn (near to near), Sfn (far to near) and so on, Snf

and Sff , which satisfy




V −
ne

V
−

fe



 =





Snn Sfn

Snf Sff









V +
ne

V
+

fe



 , (1)

We may write the following properties for the S matrix: (a) for any reciprocal network

S is symmetric so that Snn = ST
nn and Sff = ST

ff and Snf = ST
fn. (b) defining indices i

and j both between 1 and N , because of the near-far symmetry, Si,j = SN+i,N+j, so that

Snn = Sff , and Si,N+j = SN+i,j, so that Sfn = Snf .

Combining those properties, we define the reflection matrix Γ ≡ Snn = Sff , which is

symmetric, and the transmission matrix τ ≡ Sfn = Snf which is also symmetric. We

therefore can rewrite Eq. (1)





V −
ne

V
−

fe



 =





Γ τ

τ Γ









V +
ne

V
+

fe



 , (2)
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where the following properties exist

Γ = Γ
T (3)

and

τ = τ
T (4)

In the next section we shall derive a generalized ABCD matrix from the scattering matrix.

III. DERIVATION OF THE GENERALIZED ABCD MATRIX FROM THE

SCATTERING MATRIX

Writing the forward (entering) and backward (exiting) voltages in terms of total voltages

and currents, we have

V
+ =

1

2
(V + RI) (5)

and

V
− =

1

2
(V − RI), (6)

where R is the port impedances of the S matrix. Setting Eqs. (5) and (6) into Eq. (2), 1
2

cancels and we obtain




Vne − RIne

Vfe − RIfe



 =





Γ τ

τ Γ









Vne + RIne

Vfe + RIfe



 . (7)

Opening, rearranging and putting all variables in the left side, results in a 4×2 block matrix

of N ×N blocks multiplying a vector of the variables Vne, Ine, Vfe and −Ife, equal 0 on the

right side. This can be opened into





U − Γ −R(U + Γ )

−τ −Rτ









Vne

Ine



 +





τ −Rτ

U − Γ R(U − Γ )









Vfe

−Ife



 = 0, (8)
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from which we can express the near end (voltage and current) in terms of the far end

elements, as follows





Vne

Ine



 = −





U − Γ −R(U + Γ )

−τ −Rτ





−1





−τ Rτ

U − Γ R(U − Γ )









Vfe

−Ife



 = 0, (9)

We define the ABCD matrix by:





Vne

Ine



 =





A B

C D









Vfe

−Ife



 , (10)

where A, B, C and D are N × N matrices and we defined the far end current Ife with

opposite sign than this used for other descriptions, like for the S matrix [5–8]. We may

invert the matrix in Eq. (9), using the Schur complements, the fact that U + Γ commutes

with (U − Γ )−1 and the identity (U + P )−1 = U − (U + P )−1P , obtaining

1

2





U −(U + Γ )τ−1

−U/R −(U − Γ )τ−1/R



 , (11)

and by doing the matrix multiplication in Eq. (9) and compare with Eq. (10), we obtain the

ABCD matrix submatrices in terms of the scattering matrix, as follows

A =
1

2
[τ + (U + Γ )τ−1(U − Γ )], (12)

B =
R

2
[−τ + (U + Γ )τ−1(U + Γ )], (13)

C =
1

2R
[−τ + (U − Γ )τ−1(U − Γ )], (14)

and

D =
1

2
[τ + (U − Γ )τ−1(U + Γ )], (15)

Using properties (3) and (4), we remark that

A = D
T (16)
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IV. DESCRIPTION OF THE MTL BY A GENERALIZED ABCD MATRIX

In this section we shall call the near end vector of voltages and currents Vne = V1 and

Ine = I1 and the far end vector of voltages and currents Vfe = V2 and Ife = −I2, so that

Eq. (10) is more naturally rewritten without a minus sign:





V1

I1



 =





A B

C D









V2

I2



 , (17)

We may rewrite Eq. (17) as





V1

−I1



 =





A −B

−C D









V2

−I2



 , (18)

or




V2

−I2



 =





A −B

−C D





−1 



V1

−I1



 , (19)

so that the matrix in Eq. (19) describes the same MTL after inverting between near and far

end. The inverted system is identical to the original system and therefore its ABCD matrix

must be identical




A B

C D





−1

=





A −B

−C D



 . (20)

The inverse of a block matrix can be written as





A B

C D





−1

=





S
−1
D

−A
−1

BS
−1
A

−D−1CS
−1
D

S
−1
A



 , (21)

where

SA = D − CA
−1

B (22)

and

SD = A − BD
−1

C (23)

are the Schur complements of A and D respectively. Therefore,

SD = A
−1 (24)
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which implies

det (A − BD
−1

C) = 1/ detA. (25)

The MTL must be reciprocal, hence the determinant of the ABCD matrix must be 1. So

using the block matrices determinant identity

1 = det





A B

C D



 =

det (A − BD
−1

C) det D = det D/ det A, (26)

hence

det A = det D, (27)

which is the generalization of the one dimensional left-right symmetric case for which A = D

and confirms the property in Eq. (16).

A. Diagonalize the elements of the ABCD matrix

Let us define a transformation on the voltages, V = TV V ′ and on the currents I = TII
′.

Requiring the transformation to be transformer-like implies that V T I = V ′T I ′, so that

V
T
I = V

′T
T

T
V TII

′, (28)

which must hold for any voltages and currents, so that

T
T
V TI = U . (29)

Let us choose the transformation so that it diagonalizes A, having

A
′ = T

−1
V ATV , (30)

so that A′ is the diagonal eigenvalues matrix of A. Using Eq. (29) we may also write this

as A
′ = T

T
I ATV . From Eq. (16), which is also confirmed by Eq. (27), we know that the

eigenvalues of D are the same as those of A. So transposing Eq. (30) we obtain

D
′ = A

′ = A
′T = T

T
V DTI . (31)

From Eq. (24), we see that S
−1
D

, and hence SD, gets diagonalized by the same transformation

which diagonalizes A. Let us call S′
D

the eigenvalues matrix of SD, and we obtain

S
′
D

= T
T
I SDTV (32)
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Using Eq. (23), and then Eqs. (30) and (31) we get

S
′
D

= T
T
I (A − BD

−1
C)TV =

A
′ − T

T
I BD

−1
CTV =

A
′ − T

T
I BTID

−1 ′
T

T
V CTV , (33)

from which result the diagonalization of B and C, as follows

B
′ = T

T
I BTI (34)

and

C
′ = T

T
V CTV . (35)

For a matched MTL V = Z0I, where Z0 is the characteristic impedance matrix of the

MTL. Using the diagonalizing transformations, we have for a matched line

TV V
′ = Z0TII

′, (36)

or

V
′ = Z

′
0I

′, (37)

where

Z
′
0 = T

T
I Z0TI , (38)

is the diagonal eigenvalues matrix of the characteristic impedance matrix. Each element of

V ′ and I ′, represents a mode.

B. Obtaining the characteristic impedance matrix from the generalized ABCD

matrix

When the MTL is matched, the relation between the voltage vector V and the current

vector I is V = Z0I anywhere on the transmission line, and specifically at the input and

output of the line. In such case Eq. (17) may be written





Z0I1

I1



 =





A B

C D









Z0I2

I2



 , (39)
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which may be rearranged into




Z0 −(AZ0 + B)

U −(CZ0 + D)









I1

I2



 = 0. (40)

For non zero currents, the determinant of the above matrix must be 0. Because the U term,

one may easily express the determinant, getting a square matrix equation for Z0

Z0CZ0 + Z0D − AZ0 − B = 0 (41)

Multiplying from left by T
T
I and from right by TI and using Eqs. (30)-(35) and Eq. (38), all

the matrices in Eq. (41) diagonalize and we are left with a regular square equation for the

individual eigenvalues

Z ′2
0 C ′ + Z ′

0(D
′ − A′) − B′ = 0, (42)

and using D′ = A′, the eigenvalues of Z0 are

Z ′
0 =

√

B′/C ′, (43)

where we take the plus sign for the forward moving waves. The input-output relation for

each mode on a matched line is obtained via the ABCD matrix for this mode, as follows




Z ′
0I

′
1

I ′
1



 =





A′ B′

C ′ D′









Z ′
0I

′
2

I ′
2



 , (44)

where for brevity we do not write the index of the mode, understanding that non bold values

represent values belonging to a mode. This results in

I ′
1 = (A′ + B′/Z ′

0)I
′
2. (45)

Using Eq. (43), D′ = A′ and the fact that the determinant of the single mode ABCD matrix

is 1, one obtains

I ′
1 =

(

A′ +
√

A′ 2 − 1
)

I ′
2. (46)

One usually defines in such case A′ ≡ cosh(γ), so that
(

A′ +
√

A′ 2 − 1
)

= exp(γ), but being

rather interested in lossless propagating waves we define

A′ ≡ cos(θ), (47)

obtaining

I ′
1 = exp(jθ)I ′

2, (48)
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so that θ is the propagation shift angle of the given mode i for a matched line (losses can

still be incorporated by letting θ be complex). One can calculate the relative (equivalent)

dielectric constant ǫeq for the given mode by the relation

θ =
2πfl

c

√
ǫeq, (49)

where f is the frequency, l is the MTL length and c is the speed of light in vacuum.

C. Simplification for homogeneous media

In [2] it is shown that for a MTL in homogeneous medium, one can express the voltage-

current vector pair at any location on the line as function of the voltage-current vector pair

at another location. Specifically, between near and far end




V1

I1



 =





U cos(θ) jZ0 sin(θ)

jY0 sin(θ) U cos(θ)









V2

I2



 , (50)

where Y0 = Z
−1
0 is the characteristic admittance matrix and

θ =
2πfl

c

√
ǫr (51)

is the propagation shift angle of the whole voltage-current wave. In this case A = D =

U cos(θ) is diagonal with equal elements, so that any orthogonal matrix diagonalizes A or

D, hence TV = TI ≡ T . The matrix T diagonalizes the characteristic impedance matrix

Z0, which is a symmetric matrix, so that

Z
′
0 = T

T
Z0T, (52)

V. DERIVATION OF THE SCATTERING MATRIX FROM A GENERALIZED

ABCD MATRIX

Starting from Eq. (10), we express the voltages and the current vectors in terms of entering

and exiting waves voltage vectors

V = V
+ + V

− (53)

and

RI = V
+ − V

− (54)
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where R is the port impedances of the S matrix. Using those for the near and far ends in

Eq. (10), we get





V
+

ne + V
−

ne

(V +
ne − V −

ne)/R



 =





A B

C D









V
+

fe + V
−

fe

−(V +
fe − V

−
fe)/R



 . (55)

Opening, rearranging and putting all variables in the left side, results in a 4×2 block matrix

of N ×N blocks multiplying a vector of the variables V −
ne , V

−
fe , V +

ne and V
+

fe , equal 0 on the

right side, which can be rearranged in





U −(A + B/R)

−U −(RC + D)









V −
ne

V
−

fe



 +





U −(A − B/R)

U −(RC − D)









V +
ne

V
+

fe



 = 0, (56)

from which we can express the exiting voltage vector waves in terms of the entering voltage

vector waves, as follows





V −
ne

V
−

fe



 = −





U −(A + B/R)

−U −(RC + D)





−1





U −(A − B/R)

U −(RC − D)









V +
ne

V
+

fe



 = 0, (57)

so that the above connection matrix is the scattering matrix. We may invert the matrix in

Eq. (57), using the Schur complements and perform the matrix multiplication to obtain the

S matrix block components

τ = 2[A + B/R + RC + D]−1. (58)

and

Γ = −1

2
τ [A − B/R + RC − D] (59)

One may set τ and Γ from Eqs. (58) and (59) into Eqs. (12)-(15) to confirm their validity.
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VI. SCHEME FOR A MATCHED AND CROSSTALK FREE TRANSMISSION

We introduce a pre-processing transformation Gpre at the input of the MTL and a post-

processing transformation Gpost at the output of the MTL, as illustrated in Figure 1. The

FIG. 1: Multiconductor communication implementing a matched and crosstalk free transmission

scheme. A pre-processing transformation unit is implemented at the input of the MTL and a

post-processing transformation unit is implemented at the output of the line.

line is fed by the maximum number of independent generator signals Vg i, for i = 1, 2..N ,

each having the internal impedance Zg i and loaded at the far end by the loads ZL i, so that

the generator and load impedances are described by diagonal matrices Zg and ZL. In general,

Zg and ZL may be complex, but matching a complex load to transmission line requires more

sophistication even in the one dimensional case, so for the purpose of this work, Zg and ZL

are considered real.

Considering a multidimensional linear transformation, between N input voltages V1 and

N output voltages V2, so that

V2 = GV1 (60)

A transformer-like transformation satisfies V T
1 I1 = V T

2 I2 and combining this with Eq. (60)

we obtain V T
1 I1 = V T

1 GT I2, which must hold for any V1, hence

I1 = G
T
I2. (61)

Now if the output voltages vector V2 is related to the output currents vector I2 by a load

network having an impedance matrix Z, so that

V2 = ZI2, (62)
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the relation between the input voltages and currents vectors is

V1 = ZinI1, (63)

Zin being the reflected impedance, given by

Zin = G
−1

Z(G−1)T , (64)

Which looks like the generalization of a one dimensional transformer. For the MTL to be

matched at output one requires

Z0 = G
−1
postZL(G−1

post)
T . (65)

Using Eqs. (38) and (29), one finds that (65) is satisfied by

Gpost =

√

ZLZ
′ −1
0 T

−1
V . (66)

Similarly, we require that looking “back” from the MTL input toward the generator, the

Thevénin equivalent impedance matrix be the characteristic impedance matrix Z0, implying

Z0 = GpreZgG
T
pre, (67)

and again using Eqs. (38) and (29), one finds that (67) is satisfied by

Gpre = TV

√

Z ′
0Z

−1
g . (68)

We remark that both Gpre and Gpost are easily computed because ZL, Zg and Z ′
0 are

diagonal matrices.

When using the processing units, one easily obtains the values of Vin and Vout in Figure 1,

as follows

Vin (proc) =
1

2
Vg, (69)

and

Vout (proc) =
√

ZLZ−1
g Vin (proc) exp(−jθ), (70)

where exp(−jθ) is a diagonal matrix describing the delays of the modes, see Eq. (49).

We shall need also Vin and Vout without the processing units. Using the ABCD description

of the MTL




Vin

Iin



 =





A B

C D









Vout

Iout



 , (71)
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and Vout = ZLIout, we obtain

Vin = ZinIin, (72)

where

Zin = (AZL + B)(CZL + D)−1, (73)

Using Vg = ZgIin + Vin, we obtain

Vin (no proc) = (ZgYin + U)−1
Vg, (74)

where Yin = Z
−1
in . Using Vout = ZLIout we obtain from Eq. (71)

Vout (no proc) = (A + BYL)−1
Vin (no proc), (75)

where YL = Z
−1
L .

VII. SIMULATIONS

We shall use the circuit described in Figure 2 for the simulations. We consider both cases

of with or without the pre/post-processing blocks. In the case without pre/post-processing,

the blocks are shortened, and each electrical line just passes through.

From the physical point of view, we shall examine both cases of homogeneous and non

homogeneous media, i.e. in case the wires in Figure 2 are in free space or surrounded by

an insulator, respectively. The last case is non homogeneous, because part of the fields are

inside the insulator and part in the surrounding air.

For all cases, the MTL in Figure 2 is fully simulated electromagnetically using HFSS

commercial software (FEM method), and modeled into S parameters block, for all the needed

frequencies. This S parameters block is further incorporated into ANSYS commercial circuit

level simulation tool, named “Designer”.

The Designer circuit without the processing units is shown in Figure 3. For the circuit

with the processing units, we need to implement the transformations Gpre and Gpost. For

the purpose of this work, those are implemented by N × N transformers. Figure 4 shows

such an implementation for a 2 × 2 transformation with coefficients





a b

c d



.

We used all the load impedances equal to the generator impedances, and in this case

one remarks from Eqs. (66) and (68) that Gpost = G−1
pre, which means changing inputs with
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FIG. 2: The geometry is based on flat cables, the conductors are cylindrical with radius a =

0.1605 mm in free space, and the distance between their centers is d = 1.27 mm. The number of

conductors is 4, hence N = 3. The MTL length is l = 20 cm (the figure is not in proportion due to

space limitations). The conductors 1, 2 and 3 are fed by Vg i = 2V with an internal impedance of

Zg i = 50Ω, at 50, 100 and 200MHz respectively (which represent forward voltages of 1V through

transmission lines of 50Ω), and are loaded at the far end with ZL i = 50Ω. The conductors are

numbered up-down by 1, 2 and 3 and the grounded conductor is the common. The near and far end

grounds are of course different electric points and for simplicity we use the same symbol for them.

The near and far end lumped elements are referred to the near and far end grounds, respectively.

outputs. This simplifies the Designer circuit which incorporates the processing units, which

is shown in Figure 5.

In the following subsections we shall present the simulation results vs the theoretical

results for the homogeneous and non homogeneous cases.

A. Homogeneous medium

In this section we consider the conductors shown in Figure 2 in free space, i.e. without

insulation, and the simulated geometry is shown in Figure 6. We run the electromagnetic

simulation and obtained the scattering matrices for port impedance R = 50Ω for the 3
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FIG. 3: Designer circuit without pre/post-processing. The middle block represents the S matrices

derived for the MTL with ports p1-p3 for the near end and ports p4-p6 for the far end. We

measured the voltages at the near end (Vin) and far end (Vout) of the MTL.

frequencies: 50, 100 and 200MHz.

On the other hand, the characteristic impedance matrix has been calculated in [2] for the

geometry in Figure 2, assuming a ≪ d and is given by

Z0 ij =







η0

π
ln d(N+1−j)

a
i = j

η0

2π
ln d(N+1−j)(N+1−i)

a|j−i|
i 6= j

, (76)

where η0 = 377Ω is the free space impedance. This results for N = 3 and the dimensions in
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FIG. 4: The implementation of a 2 × 2 linear transformation between V1 and V2. The primary

voltage vector V1 components are V11 and V12 and the secondary voltage vector V2 components are

V21 and V22. The transformation implements V21 = aV11 + bV12 and V22 = cV11 + dV12. Because

the “Designer” simulation can only implement transformers of positive ratio, a negative coefficient

requires interchanging the wires at one side of the individual transformer.

Figure 2 in

Z0 =
η0

π











3.1671 1.9301 1.2370

1.9301 2.7616 1.3808

1.2370 1.3808 2.0685











. (77)

The eigenvalues of this characteristic impedance matrix Z ′
0 are: 697.69, 153.91 and 108.06Ω,

and we will compare them with the eigenvalues for the non homogeneous case, see next

section.

Now using Eqs. (50) and (51) with ǫr = 1 we obtain the ABCD matrix for any frequency,

and using it in Eqs. (59) and (58) with R = 50Ω we obtained the S matrix for any frequency

and compared them to the S matrices obtained from simulation. The differences between

the analytic solution and simulation is around 0.5%, so that the simulation validates the

theory in [1–3].

Next we run the Designer simulation without the processing units, as described in Fig-

ure 3. The Designer results are compared with analytic results obtained from Eqs. (74) and
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FIG. 5: Designer with pre/post-processing units. The small block represents the S matrices derived

for the MTL. We measured the voltages at the input of the pre-processing unit (Vin) and at the

output of the post-processing unit (Vout). It is to be mentioned that the transformers’ block is for

the homogeneous case below, and we will not supply an additional figure for the non homogeneous

case which will come after.

(75) and shown in table I. The simulated results reproduce with a very high accuracy the

theoretical results in table I. We remark that there is crosstalk, for example the 100MHz

generator is applied only to conductor 2, but at the near end we have 1.47V on conductor

2 and around 0.28V and 0.21V on conductors 1 and 3. So in average the near end crosstalk

for conductor 2 is 17%. The system is of course not matched, output voltages differ from

input voltages by magnitude and not only by phase.

We calculate now the transformation needed to obtain a perfect match and eliminate the
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FIG. 6: Conductors in free space simulation geometry.

TABLE I: Voltages Vin and Vout measured by Designer, and calculated analytically without pro-

cessing units. Magnitude is in [V], phase is in degrees and the upper row shows the frequencies in

[MHz].

Simulated Calculated

f 50 100 200 50 100 200

Vin 1 1.386 13.8 0.286 -1.45 0.0936 -45.9 1.386 13.9 0.286 -1.97 0.0916 -47.3

Vin 2 0.276 23.5 1.476 11.2 0.1756 -13.7 0.276 23.1 1.476 11.2 0.1746 14.6

Vin 3 0.176 14.6 0.216 4.62 1.676 9.8 0.176 13.9 0.226 3.94 1.676 9.8

Vout 1 0.766 -30 0.286 166.1 0.1266 118.6 0.766 -30 0.286 165.8 0.1236 118.2

Vout 2 0.266 -162.5 0.696 -37.3 0.2056 134.1 0.266 -162.8 0.696 -37.6 0.2056 133.9

Vout 3 0.166 -168.9 0.216 170 0.6426 -60.8 0.166 -169.4 0.216 170 0.6346 -61

crosstalk. Diagonalizing Z0 (see Eq. (52), we find the matrix T (which is equal to TV and

TI is this case), and the characteristic impedance matrix eigenvalues Z ′
0. Using Eq. (68) we
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find

Gpre =











−0.55454 −1.15029 2.44343

1.13404 0.29546 2.29228

−0.75339 1.29142 1.65197











. (78)

and Gpost = G
−1
pre, as explained before.

The Gpre matrix is implemented by transformers, and the way to implement it is explained

in Figure 4. Figure 4 shows a 2x2 example of such a matrix and one observes the transformers

ratios are the columns of the transformation matrix, so that one uses the ratios a and c for

first input, b and d for second input (and so on for the general case). Now one may compare

the Gpre for homogeneous (Eq. 78) with Figure 5 (which is the implementation of the matrix

in Eq. 78).

First column: -0.55, 1.13, -0.75. Those are the ratios of the 3 upper transformers in

Figure 5. One remarks the wire inversion at the secondary of 1st and 3rd in this group, so

that the lower wire connects to the next stage. For non inverted wires, the upper wire gets

connected to the next stage (like in the 2nd transformer which implements the positive ratio

1.13).

The Designer simulated results and the analytic results are presented in table II. The

TABLE II: Voltages Vin and Vout measured by Designer, and calculated analytically with processing

units. Magnitude is in [V], phase is in degrees and the upper row shows the frequencies in [MHz].

Simulated Calculated

f 50 100 200 50 100 200

Vin 1 16 -0.23 0.47m 6 -111.8 1.7m 6 -148.1 16 0 0 0

Vin 2 0.24m 6 -100.9 16 -0.57 1.9m 6 -161.1 0 16 0 0

Vin 3 0.47m 6 104.5 0.98m 6 -126.2 16 0 0 0 16 0

Vout 1 16 -12.1 0.3m 6 -118 1m 6 38.1 16 -12 0 0

Vout 2 0.15m 6 -104.2 16 -24.2 5.6m 6 34.2 0 16 -24 0

Vout 3 0.27m 6 77.2 2.8m 6 62.1 16 -48.9 0 0 16 -48

analytic results show exactly 1V 6 0, at inputs, i.e. 1
2
Vg, according to Eq. (69) and the same

voltage at output (according to Eq. (70) with Zg = ZL) with the delays given by Eq. (51),

which come out 12o, 24o and 48o for the frequencies 50, 100 and 200MHz, respectively. The
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results obtained by the Designer simulation are very close to the analytical results. Those

differences are due the assumption a ≪ d and neglecting the edge effects in the analytic

calculations.

B. Non homogeneous medium

In this section we cover the conductors shown in Figure 2 with an insulator of relative

dielectric constant ǫr = 2.1 (for all frequencies) of dimensions 2mm on 6mm as shown in

cross section in Figure 7. We run the electromagnetic simulation and obtained the scattering

FIG. 7: Cross section of the conductors inside the insulator. The arrows show the electric field for

some feeding and one remarks that it is partially in the insulator and partially in the surrounding

space. The relative dielectric constant usually changes slowly with frequency, and for simplicity

we implemented ǫr = 2.1 for the whole range of frequencies we deal with.

matrices for port impedance R = 50Ω for the 3 frequencies: 50, 100 and 200MHz. In this
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case we do not have an analytic solution, so we obtain ABCD matrices from the S matrices

using Eqs. (12)-(15), from which we find the analytic solution without processing units from

Eqs. (74) and (75).

We run the Designer simulation without the processing units, as described in Figure 3.

The Designer results are compared with analytic results and shown in table III. The ana-

TABLE III: Voltages Vin and Vout measured by Designer, and calculated analytically without

processing units, for the non homogeneous case. Magnitude is in [V], phase is in degrees and the

upper row shows the frequencies in [MHz].

Simulated Calculated

f 50 100 200 50 100 200

Vin 1 1.376 12.9 0.296 4.47 0.0776 -36.7 1.376 12.9 0.296 4.47 0.0776 -36.7

Vin 2 0.286 26.2 1.446 8.71 0.216 -0.51 0.286 26.2 1.446 8.71 0.216 -0.51

Vin 3 0.176 15.5 0.236 10.7 1.606 5.13 0.176 15.5 0.236 10.7 1.606 5.13

Vout1 0.776 -31.6 0.286 158.6 0.146 112.3 0.776 -31.6 0.286 158.6 0.146 112.3

Vout2 0.256 -166.1 0.726 -42.9 0.216 114.3 0.256 -166.1 0.726 -42.9 0.216 114.3

Vout3 0.166 -170.2 0.216 161.6 0.726 -72.8 0.166 -170.1 0.216 161.6 0.726 -72.8

lytic results are almost identical to the results obtained from the Designer simulation, the

differences appearing in less significant digits, which are not shown. This is understandable,

because the analytic solutions have been derived from the ABCD matrices, which have been

derived from the S matrices obtained by the electromagnetic simulations, used also by the

Designer.

Clearly there is crosstalk, for example the 100MHz generator is applied only to conductor

2, but at the near end we have 1.44V on conductor 2 and around 0.29V and 0.23V on

conductors 1 and 3. So in average the near end crosstalk for conductor 2 is 18%. The

system is of course not matched, output voltages differ from input voltages by magnitude

and not only by phase.

Next we diagonalize the A, B, C and D elements by Eqs. (30),(31), (34) and (35),

obtaining TV , and find the characteristic impedance matrix eigenvalues from Eq. (43).

It is to be mentioned that the above has been computed using the S matrices for the 3

frequencies, and all of them resulted in the same transformation TV and the same eigenvalues
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Z ′
0 (up to very small accuracy errors). The reason for the transformation and the character-

istic impedance eigenvalues to be frequency independent is the frequency independent fixed

value of ǫr = 2.1 we used in our electromagnetic simulations.

We also want to mention that dealing with lossless MTL, TV and Z ′
0 must be real.

Because we use results from an electromagnetic simulation, which certainly has small errors,

we get very small imaginary values, which we eliminate by taking the real part.

The characteristic impedance eigenvalues Z ′
0 obtained are: 424.13, 183.87 and 87.71Ω,

and the relative (equivalent) dielectric constant ǫeq come out: 1.7713, 1.9953 and 2.0857 for

modes 1,2 and 3 respectively. It it interesting to remark that if we transform the eigenvalues

matrix Z ′
0 scaled by

√
ǫeq, by TV Z ′

0
√

ǫeqT
T
V (see Eq. (38)), we recover with good accuracy

the homogeneous Z0 matrix in Eq. (77).

So using Eq. (68) we get

Gpre =











2.3146 0.00171 0.56562

1.6355 1.3573 −0.51086

0.67446 1.3538 1.0818











. (79)

and Gpost = G
−1
pre, as explained before. This matrix does not match the transformers’ block

in Figure 5, which has been designed for the homogeneous case, but except of this the figure

is valid, and we do not issue another figure.

In table IV we show the results obtained from the Designer simulation and the analytical

results with the processing blocks. One observes that the crosstalk obtained by Designer

or analytical calculation is not 0, but very small. This is because of the electromagnetic

inaccuracies, discussed before, and this is not a fundamental issue, but rather an accuracy

issue which can be improved. From the diagonalization, one obtains ǫeq from Eq. (49) for the

modes, which come out 1.7713, 1.9953 and 2.0857 for modes 1,2 and 3 respectively. Because

the signal on conductor i has been mapped to mode i by the TV transformation, the 50, 100

and 200MHz, “feel” relative dielectric constants of 1.7713, 1.9953 and 2.0857, respectively.

Therefore the delay angles of 15.972o, 33.901o and 69.323o, according to Eq. (49) appearing

in table IV.
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TABLE IV: Voltages Vin and Vout measured by Designer, and calculated analytically with process-

ing units, for the non homogeneous case. Magnitude is in [V], phase is in degrees and the upper

row shows the frequencies in [MHz].

Simulated Calculated

f 50 100 200 50 100 200

Vin 1 1 6 0 0.14m 6 -79.4 0.54m 6 -136.2 1 6 0 0.16m 6 -88.6 0.49m 6 -142.1

Vin 2 0.059m 6 -81.5 1 6 0 1.1m 6 -146.9 0.044m 6 -66.3 1 6 0 1.39m 6 -151.7

Vin 3 0.15m 6 -100.4 0.59m 6 -119.4 1 6 0.03 0.12m 6 -98.6 0.59m 6 -119.5 1 6 0

Vout 1 1 6 -15.97 0.035m 6 -56.2 0.27m 6 90.1 1 6 -15.97 0.017m 6 -47 0.24m 6 120.6

Vout 2 0.019m 6 73.2 1 6 -33.9 0.032m 6 24.8 0.008m 6 -9.6 1 6 -33.9 0.026m 6 -116.3

Vout 3 0.022m 6 116.8 0.018m 6 58.1 1 6 -69.3 0.012m 6 138.2 0.011m 6 4.53 1 6 -69.3

VIII. CONCLUSION

We showed in this work that it is possible to send the maximum number of signals (N)

through a lossless MTL of N + 1 conductors, without any crosstalk or return loss, using a

pre-processing unit at the input of the MTL and a post-processing unit at the output of the

MTL.

In the lossy case the pre and post-processing units would be complex, with frequency

dependent coefficients, but for low losses, the imaginary part being small, we believe that

the method can still be efficient in a frequency range of interest.

The processing units have been implemented in our simulations by networks of transform-

ers and further research is needed for deriving a good practical implementation for those

processing units.
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