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We present an exact solution of the complex field of Transition Radiation (TR) emitted by an electron incident
on a conductive screen. The solution is valid in all space. In the reactive near zone it replicates the Coulomb
fields of the electron and its image charge and their evolvement into radiation fields after termination of the
charges current at the screen. Using a general formulation for radiation diffraction from a current line, we
derive diffraction integral expressions in the reactive near-zone, the Fresnel near-zone and the Fraunhofer far-
zone in analogy to diffraction from a planar radiation source. The derived exact complex field expressions can
be useful for describing Coherent Optical TR (COTR) from a beam of phase-correlated charge particles in the
near field and in the imaging plane of the screen.

1. Introduction

Transition radiation (TR) is the electromagnetic radia-
tion emitted by a charged particle when it hits a con-
ducting or dielectric plate or foil. The wide frequency
band radiation emitted on both sides of a conductive
foil originates from the Fourier components of the termi-
nated (or correspondingly suddenly appearing) current
of the charged particle in either side of the foil, as well
as from the currents induced on the foil by the charge
particle (see figure 1).

Transition radiation is a radiative emission process
of basic interest on its own and as a possible practi-
cal source of radiation at a variety of different spectral
regimes from THz radiation [1] to X-rays [2].

The first detailed theory of TR was published by
Ginzburg and Frank [5]. They calculated the Coulomb
transverse field component in the frequency domain of
an electron of velocity v [6]:
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where the Fourier transform is defined by F{f(t)} =∫∞
−∞ f(t) expiωt dt, K1 is the Bessel function of the first

order, β is the particle velocity and γ is the Lorentz fac-
tor. In the relativistic limit these fields were assumed
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to be reflected from the screen like plane waves and
diffracted towards an observation point in the far field.

Based on this model the far field energy per unit fre-
quency per solid angle (spectral radiant intensity) emit-
ted from a single charge hitting a perfect conductor at
normal incidence is [2]:
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This expression has been used to calculate the TR
emission energy distribution pattern in the far-field of a
charged particle beam by convoluting it with the spatial
and angular distribution function of the electron beam
[3]. In the far field the spatial distribution of the e-beam
does not affect the OTR radiation energy distribution
from the e-beam [4]. However, when one considers OTR
measurements in the near field diffraction zone (for ex-
ample when one calculates the radiation distribution at
the image plane of a camera viewing the OTR screen),
Eq. (3) does not suffice.

Indeed expression (3) is not sufficient in neither the
near or far field zones, if one needs to find the TR field
emitted from a phase correlated electron beam (COTR)
[7] [8]. In this case, an exact diffraction integral ex-
pression is required, including the radiation field phase.
Shkvarunets and Fiorito [9] presented a more complete
vector diffraction model based on Love’s field equiva-
lence theorem, but it was not employed for calculation
of near field diffraction. Geloni et al developed related
derivation of synchrotron and edge radiation near field
analysis [10].

M. Castellano and V. Verzilov [11] described the fields
of the unperturbed moving charge as a superposition
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of “pseudophotons” and calculated the OTR radiated
field of a single electron as the superposition integral
of those reflected pseudophotons. In this model (the
Weizsäcker-Williams approximation) the pseudophotons
are the spatial Fourier components of the K1 fields of an
unperturbed moving charge (Eqs. (1), (2)) that are pro-
portional to the K1 function, assuming that this is the
field that is incident and reflected from the screen, from
where free space diffraction starts. This model gives a
good approximation for the complex field of the OTR ra-
diation of ultra-relativistic charged particles in the near
and far diffraction zones.

The Weizsäcker-Williams approximation model was
used by Castellano and Verzilov [11] for calculating
the spatial resolution of OTR imaging systems (used
for beam diagnostics). The same model was used by
Verzilov [12] to study the “pre-wave” zone of OTR ra-
diation, namely the zone in the radiation emmision di-
rection beyond the particle’s incidence point. In this
zone the Coulomb fields (Eqs. (1), (2)) that are bound
to the electron trajectory within a transverse range βλγ,
transform into free diffraction radiation waves (this zone
is termed in antenna theory and in the present article
the “reactive near field zone”).

Dobrovol’sky and Shul’ga considered the effect of fi-
nite size OTR target [14] and the interference effect of
the diffracting OTR radiation waves and the Coulomb
field of the propagating charge (in forward OTR) [13].
Both works used the conventional Weizsäcker-Williams
model (based on the K1 source approach) and consid-
ered only ultra-relativistic charges.

We present an exact vector field diffraction theory of
TR from a single electron, based on dyadic Green func-
tion formulation [15]. The source of the diffraction in-
tegral is the current of the electron itself and its image
charge. The complex field solution is exact at any dis-
tance: it reproduces on one hand the source Coulomb
field of the electron at a proper distance before the elec-
tron hits the screen (1) (on the screen it produces a sim-
ilar field only at relativistic energies) and on the other
hand it exactly describes the radiation field in all optical
diffraction regimes, including the ”reactive near field”,
the Fresnel near field zone and the Fraunhofer far field.
It can be then employed to calculate coherent and par-
tially coherent TR radiation from temporally or spatial
correlated electrons in an electron beam.

Optical Transition Radiation (OTR) is used exten-
sively as diagnostics of the charge distribution across the
cross-section of electron beams [16] and pulse duration
[17]. In the application of OTR screens as e-beam pro-
file diagnostics the screen is viewed by a camera focused
to produce an image of the OTR screen on the camera
sensor’s screen. Assuming that there is no phase cor-
relation between the radiation wave-packets emitted by
the electrons which hit the OTR screen at different lo-
cations (namely the electrons hit the screen at random),
the light density distribution on the camera image plane
replicates the incident electron current distribution on

the OTR screen. The e-beam profile image resolution is
then limited only by the Modulation Transfer Function
(MTF) of the camera. Thus in this application there
is no need to know the coherent field (amplitude and
phase) of the radiation wave-packets emitted by the in-
dividual electrons.

Recently coherence effects were observed in the mea-
surement from OTR screens (COTR) [7]. The coherence
effects came into expression as speckled images on the
camera imaging plane and the integrated OTR power
was not proportional to the e-beam current. The co-
herence effects that were described originally as ”unex-
plained physics” [8] are now understood to be the re-
sults of correlation of the electrons arrival time due to a
Coulomb collective micro-dynamic process in the e-beam
transport line preceding the OTR screen [18]. Evidently,
in order to interpret the imaged COTR radiation pattern
at the camera sensors plane, one needs to know the co-
herent radiation field in the ”near field diffraction zone”
of the OTR screen and the Optical Transfer Function
(OTF) of the camera optical system.

The radiation field on the screen is the result of coher-
ent interference of the radiation fields of the electrons in
the beam. Therefore, besides knowledge of the incidence
phase of the electrons on the OTR screen, a necessary
condition for composing the OTR screen coherent near
field radiation pattern is an exact complex field expres-
sion of the OTR emission from an individual electron.
The derivation of such an exact expression, valid in all
near and far field regimes, is the goal of this paper. This
formulation may be of interest priorly in connection to
moderately relativistic and non relativistic protons and
ions [19] and electrons [20].

The derivation of the exact TR diffraction equation
in the article includes a general “line source” diffraction
theory (as opposed to “surface source” in conventional
diffraction theory). This formulation is generic an can
be useful for various kinds of coherent line sources of
radiation.

The paper is organized as follows: in Section 2 we
define the formulation of the diffraction from a general
line source. In Section 3 we identify the diffraction zones
(near and far) of a line source in analogy to the Fresnel
and Fraunhofer’s diffraction zones from a surface source.
In Section 4 we explain the formation zone and practical
considerations for the integration range, and in Section 5
we implement the line source model to the case of TR
and present computed results in different zones, includ-
ing the “reactive near zone” (pre-wave zone).

2. Radiative Emission from a general line source

Diffraction theory has been developed primarily for anal-
ysis of radiation from a surface source. For the analy-
sis of TR we need an electromagnetic diffraction theory
from a line source. In the following two sections we
present a general formulation for diffraction from a line
current source of arbitrary axial distribution in the z
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Fig. 1. The schemes of backward transition radiation (BTR)
and forward transition radiation (FTR) for a perfect conduc-
tor foil screen and their equivalent image charge representa-
tion
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where r and r⇥ are respectively the source and observation points coordinates
(see fig). If one defines a line charge current density J̆(r⇥) = êzĬ(z
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dial component of the observation point, we can find the Green function
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rections Ĕ = Ĕz êz + Ĕ⇥ê⇥ we can calculate the transverse electric field as
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where in this case the transverse Green function is
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resulting with the exact expression for the transverse Green function. This
solution can be use in order to estimate radiation in the reactive near zone:
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In most practical problems, we are interested in the range kR⇥ = 2⇥R0
�
⇥

1. In this range, the last 2 terms of the exact solution can be neglected.

3 Transverse Green Function in the Fernel

and Fraunhofer Limits

Estimation of the Green function in the Fresnel and Fraunhofer limits will
be performed in order to simplify these results. The Fernel limit is usually
defined for a planar source, therefore, we need to modify the condition. De-
riving these limits are based on the expansion of the R’ term to the second
order in z0

r

4

z2z1 z0

L

Ĕ⇢
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Fig. 2. Geometry of radiation diffraction from a current line
source

direction:

J̆(r′, ω) = êz Ĭ(z′, ω)δ(x′)δ(y′) (4)

as shown in figure 2.
The electric field created by a current density J̆(r) in

frequency domain can be calculated as

Ĕ = −iωµ
∫
Ge(r, r’)J̆(r’) d3r’ (5)

where Ge(r, r’) is the Maxwell equation free-space
dyadic Green function [15]:

Ge(r, r’) =

(
I +
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k2

)
eik|r−r’|

4π|r− r’| (6)

where r and r’ = êzz
′ are the source and observation

point coordinates, respectively (see figure 2). We em-
ploy equations (5) and (6) for a line source (4), and

define R′ =
√
ρ2 + (z − z′)2, where ρ is the cylindrical

coordinates radial component of the observation point
P (see figure 2). The radiation field has transverse and

axial components Ĕ = Ĕzêz + Ĕρêρ. We are interested
in the transverse electric field component. The radially
symmetric field can then be expressed in terms of a lon-
gitudinal to transverse dyadic Green function element
Gρ(ρ, z, z

′) = Gρz(ρ, z, z
′):

Ĕρ(ρ, z) = −iωµ
∫
Ĭ(z′)Gρ(ρ, z, z

′) dz′ (7)

where from (6) the longitudinal - transverse Green func-
tion is:
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or explicitly:
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− 3
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]
(9)

The measurable optical parameter is usually the spec-
tral power density. The expression for the spectral power
density is derived from the Parseval theorem in the fre-
quency range 0 < ω <∞:
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S
¯
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For a line source (which has cylindrical symmetry),
the axial spectral power density is:

Sz(ω) =
1

π
Ĕρ(ω)H̆∗φ(ω) (11)

In the far-field only, in the paraxial approximation we
may define the spectral radiant intensity as:

dUe
dΩdω

=
z2

π

√
ε0
µ0
|Ĕρ(ω)|2 (12)

where z is the coordinate of the observation plane rela-
tive to the source position.

3. The Diffraction Zones of a Line Source

Equations (7) and (9) constitute an exact diffraction in-
tegral formulation for a longitudinal current line source
of any current distribution. As in diffraction theory from
a planar source, it is possible to define also for a line
source approximate diffraction integrals and diffraction
zones analogous to the reactive near-field zone, the Fres-
nel diffraction near-field zone and the Fraunhofer diffrac-
tion far-field zone of a planar source.

In most practical cases we are interested in the field
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in a spatial range longer than a wavelength:

kr = 2πr/λ� 1 (13)

In this range the Green function (9) can be replaced by:

Gρ = −ρ(z − z′) e
ikR

4πR3
(14)

In the diffraction zones, we can further approximate

(14) by employing series expansion of R in terms of z′

r
where (see figure 2):

R′ = [(z − z′)2 + ρ2]
1
2 = [(z2 − 2zz′ + z′2 + ρ2]

1
2 =

r[1− 2
zz′

r2
+
z′2

r2
]
1
2 (15)

where we defined r =
√

(z2 + ρ2) - the distance of the
observation point from the coordinates origin. The ex-

pansion in terms of z′

r is analogous to the expansion in
terms of the source transverse coordinates in the case of
diffraction from a planar source.

3.A. Longitudinal Quadratic-Phase ”Fresnel” Near
Zone Limit
Defining cos θ = z

r , second order Taylor expansion re-
sults in:

R′ ' r[1− z′

r
cos θ +

1

2

z′2

r2
sin2 θ] (16)

This result is now substituted into the Green func-
tion phase (14). In the denominator we substitute only
the zero order R′ ' r. This results in the longitudinal-
to-transverse Green function expression in a quadratic-
phase paraxial approximation zone (analogous to the
convention of Fresnel zone in the case of a transverse
current source):

Gρ = − sin θ cos θ
eikr

4πr
e−ikzz

′+ik sin2 θ z
′2
2r (17)

where kz = k cos θ.
Substituting (17) in (7), the ”Fresnel” integral of an

axial line current source is:

Ĕρ =
iωµ

4π

eikr

r3
ρ

∫ z2

z1

Ĭ(z′)e−ik(cos θz′+sin2 θ z
′2
2r )(z − z′)dz′

(18)

for a general sinusoidal current distribution Ĭ(z) ∝ eik0z
this integral can be expressed in terms of the tradi-
tional Fresnel integrals c(x) =

∫ x
0

cos(t2)dt, s(x) =∫ x
0

sin(t2)dt.
The validity range of the ”Fresnel” quadratic phase

approximation is determined by the requirement that
the contribution of the third order expansion of (14) to
the Green function phase is much smaller than π and is
neglected. When also the quadratic phase term in (18) is
much smaller than π, it can also be dropped, and then

the ”Fresnel” near field approximation turns into the
”Fraunhofer” far field approximation, that is considered
in the next section.

Using |z′| < L, the ”Fresnel” near field diffraction
zone of the longitudinal line current is defined in the
range:

(
L3ρ2z

8πλ

)1/5

� r �
(
ρ2L2

λ

)1/3

(19)

where L is the length of the radiation line-source.
Note that in the derivation of (17) and (18) we did not

need to resort to the paraxial approximation ρ � z. In
the paraxial approximation r ≈ z and the LHS of (19)
is replaced by

(
L3ρ2

8πλ

)1/4

� z (20)

Also note that in the near diffraction zone, contrary to
the far zone, the parameters r, sin θ = ρ/r, cos θ = z/r
are not uniquely defined, and depend on the choice of
origin z′ = 0 of the line source function (see figure 2).

Therefore, the radiation pattern Ĕρ(ω, z, ρ) may seem
somewhat different for different choice of origin.

3.B. Longitudinal ”Fraunhofer” Far Zone Limit

In the Fraunhofer diffraction far zone limit, the
quadratic term of the phase is negligible. In analogy
to the planar source case, the far zone of a line source
is defined by the requirement that the quadratic phase
term in the exponent of (17) is negligible, resulting:

z ∼= r �
(
ρ2L2

λ

)1/3

(21)

The longitudinal-to-transverse Green function in the
Fraunhofer limit is then:

Gρ = − sin θ cos θ
eikr

4πr
e−ikzz

′
(22)

The line source far-field diffraction integral is then:

Ĕρ =
iωµ

4π

eikr

r
sin θ cos θ

∫ z2

z1

Ĭ(z′)e−ikzz
′
dz′ (23)

4. Ginzburg’s Formation Zone

The derivation so far is general for any longitudinal
current line-source. We now specify to the case of
OTR emission from an electron incident on a conducting
screen.

Radiation from a free electron is always formed in a
finite region and not in a point. This region is consid-
ered the ”formation zone” according to Ginzburg [21].
The formation zone size is dependent on the emission
wavelength λ. Its size is termed the ”formation length”-
Lf . The formation length is essentially the length of
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traversal in free space of a charged particle, such that
the radiation emitted by it at wavelength λ accumulates
at the observation point a phase increment of 2π.

Ginzburg’s formation length is [21]:

Lf = (1 + β)γ2λ ≈ 2γ2λ (24)

The second part of the equation is for β ' 1.
The diffraction formula integration (7), employed in

the case of TR to the charged particle current, is sup-
posed to be carried out in the ideal case from −∞ to 0
or from 0 to∞. In practice, the radiation emission from
the electrons well before the formation zone (L > Lf ) is
negligible. This consideration provides a practical range
for performing the numerical integration of the diffrac-
tion integral. We will investigate this consideration us-
ing the exact solution for different lengths in units of
the formation length in order to verify the convergence
of our solution.

5. Transition Radiation Model

Let us consider now the case of transition radiation emis-
sion from a perfect conductor foil screen set at arbitrary
angle relative to the electron propagation direction as
shown in figure 1. An observer at P1 in the half space
before the foil would sense the non radiative Coulomb
fields of the electron (both electric and magnetic - due to
the electron velocity [6]) only if it is positioned very close
(distance ∼ βγλ/2π) to the electron trajectory. This
field is the same as the Coulomb field of an unperturbed
moving charge (Eqs. (1), (2)), if observed far enough
before the screen. However, because the electron charge
vanishes upon incidence on the screen, as it seems in
the back half space, the abrupt temporal change in the
electron current I1 means that its Fourier spectrum con-
tains a very wide band of frequencies, and these current
spectral components radiate in free space, and would be

sensed by observer P1 at any finite distance away from
the screen.

The radiation from the terminated current I1 is not
the only source of BTR radiation. The other, more
dominant contribution to BTR radiation is the surface
current on the screen due to the time varying positive
surface charge induced on the conductor screen by the
approaching negatively charged electron, which vanishes
almost instantaneously (at the dielectric relaxation time
of the conductor) when the electron is incident on the
screen. Also these time varying surface currents radiate
in a wide frequency band, and their radiation would be
sensed at point P1 as well.

Using the method of equivalent charge images [15], we
assert that the induced current on the infinite conductor
screen radiates into the half space exactly like an imag-
inary point particle of charge +e that propagates along
the trajectory of the mirror image (relative to the screen
surface) of the electron e, and is represented by current
I+
1 in figure 1. This current terminates exactly at the

same time of the electron’s incidence on the screen. The
combined radiation fields from both sources is the Back-
ward Transition Radiation (BTR).

A similar physical process takes place in the forward
half space of the screen, if it is made of a thin foil,
through which the electron emerges into the forward
half space abruptly. The Forward Transition Radiation
(FTR) observed at point P2 in this half space is the
same as generated in an equivalent picture of electron
current I2 and a positive image charge current I+

2 , both
appear to be generated abruptly in time in the forward
half space (see figure 1).

Taking the charge propagation direction to be along
coordinate z, and arbitrarily choosing the coordinate ori-
gin z = 0 at the particle intersection point with the
conductor surface (A1 or A2), the current densities cor-
responding to currents I1, I+

1 , I2, I+
2 are:

J1(r, t) = −eδ(x− x0)δ(y − y0)δ[z − v(t− t0)][1− η(t− t0)] (25)

J+
1 (r, t) = +eδ(x− x0)δ(y − y0)δ[z − v(t− t0)][1− η(t− t0)] (26)

J2(r, t) = −eδ(x− x0)δ(y − y0)δ[z − v(t− t0)]η(t− t0) (27)

J+
2 (r, t) = +eδ(x− x0)δ(y − y0)δ[z − v(t− t0)]η(t− t0) (28)

where (x0, y0) and t0 are respectively the coordinates
and time of incidence (or emergence) of the real or imag-
inary charge particle at the screen. The η function is
defined as:

η(t− t0) =

{
1 t > t0

0 t < t0

}
(29)

Fourier transforming over time and integrating over

transverse coordinates, the corresponding spectral cur-
rents are:

Ĭ1(z) = −eeiωt0eiωv z[1− η(z)]η(z + L) (30)

Ĭ+
1 (z) = +eeiωt0ei

ω
v z[1− η(z)]η(z + L) (31)

Ĭ2(z) = −eeiωt0eiωv z[1− η(z − L)]η(z) (32)

Ĭ+
2 (z) = +eeiωt0ei

ω
v z[1− η(z − L)]η(z) (33)
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Here we included a finite electron trajectory length
L before or after the screen to account for injection or
termination of the electron beam. Since most of the TR
is generated in the Ginzburg formation length [21], the
diffraction integrals should be independent on L only if:

L� Lf (34)

in which case one may set L =∞. However, it is desir-
able to keep L finite, not only for purposes of numerical
computation, but because in practical situations (high
electron beam energy, finite screen dimensions ) the ef-
fective interaction length L is realistically finite.

In principle, the diffraction fields of both Ĭ1 and Ĭ+
1

(for BTR) need to be calculated separately and summed
up coherently and vectorially at the observation point P1

(and correspondingly so with Ĭ2 and Ĭ+
2 for FTR). This

is essential when the electron is not relativistic and its
radiation lobe has wide angle [22], [20]. In these cases
one must consider the fields generated by both currents
and sum up coherently their amplitudes that interfere
in the observation point P1. In the present work we
neglect this effect and consider the more common case
of a relativistic charged particle beam. In this case, the
radiation lobes of I+

1 (for BTR) and I2 (for FTR) are
Doppler frequency up-shifted and their angular width is
narrow (2/γ � π/2). The radiation lobes of the other
current components are Doppler down-shifted and their
interference with the main lobes may be neglected.

In the following we analyze the exact and approximate
diffraction integrals of I+

1 , which is the relevant current
source for the more useful BTR measurement scheme.
The conclusions we derive are equally valid for the other
current sources.

5.A. Exact Solution

We substitute I+
1 (z) (31) as the line current source in

the diffraction integral (7) with the exact Green function
(9).

Ĕρ = − iωµe
4π

eiωt0
∫ 0

−L

ρ(z − z′)
R′3

(1 +
3i

kR′
− 3i

(kR′)2
)×

eik(R′+ z′
β ) dz′ (35)

If the observation point position satisfies kR′ � 1 (a
sufficient condition is that it is more than a wavelength
off axis anf off the screen), then a good approximation
for (35) is:

Ĕρ = − iωµe
4π

eiωt0
∫ 0

−L

ρ(z − z′)
R′3

eik(R′+ z′
β ) dz′ (36)

Here z′ = −L is the inception point of the drifting
electron and z′ = 0 is its termination point on the screen.

It is important to note that OTR is not emitted in-
stantaneously at the incidence of the electron on the
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Fig. 3. Transverse electric field amplitude squared of TR
in the far field zone (λ = 1µm, γ = 75 at a distance of
10m). Different curves are for increasing integration lengths
in formation length units

screen, but during its entire traversal time from the
point of inception up to the screen incidence time. As
discussed in section 4, most of the contribution to the
TR field is accumulated during the electron traversal
through Ginzburg’s formation zone −Lf < z < 0. In
figure 3 we examine numerically for a specific example
convergence of the transverse distribution of the OTR
field amplitude squared to a finite value as L is increased
to the limit L � Lf . Equation (36) was integrated for
exemplary parameters: β = 0.9999 (γ = 75), λ = 1µm
(Lf = 11mm) and observation plane in the far field zone
at z = 10m. The absolute value squared of the OTR
field |Ĕρ|2 is shown in figure 3 as a function of the trans-
verse coordinate ρ for different values of L. It is seen
that the curves converge slowly to a stable value as L
increases. In this particular example N = L/Lf > 1
provides convergence within 5% to the analytical solu-
tion of a semi-infinite long beam (see equation (39) in
the next section).

5.B. Far Field Approximation

Using the longitudinal Fraunhofer approximation of sec-
tion 3.B, we substitute the Fraunhofer Green function
(22) and the image-charge current source I+

1 (z) (31) in
equation (7), and obtain for the case of BTR:

Ĕρ = −ωµe
4πr

eiωt0
1(

ω
v − kz

) sin θ cos θ (37)

Substituting kz = ω
c cos θ, we find the far-field approx-

imation for the electric field:
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Ĕρ = −µce
4πr

eiωt0
1

1
β − cos θ

sin θ cos θ (38)

Taking the square of the absolute value,we get for
small angles:

|Ĕρ|2 =
µ2c2e2β2

16π2z2

sin2 θ

(1− β cos θ)2
(39)

Finally, using (12) and c2 = 1/µ0ε0 we obtain the
well-known result for the far-field TR pattern:

dU2
e

dΩdω
=
e2β2

16π3

√
µ0

ε0

sin2 θ

(1− β cos θ)2
(40)

that is identical with (3) in the limit β ' 1.
The analytical expression (39) for a semi infinite elec-

tron trajectory is presented in figure 3 in a solid line,
shown to be the limit of convergence of the numerical
solution in the far field zone and L→∞.

As indicated earlier, the complete TR field should in-
clude (for BTR) also the contribution of the real electron

current Ĭ1(z) (30) summed up coherently and vectori-
ally with the main field contribution of the image charge
(38). This contribution turns out to be

Ĕρ =
µce

4πr
eiωt0

1
1
β + cos θ

sin θ cos θ (41)

In the case of normal incidence on the screen (and only
in this case) the total BTR field is given as the algebraic
sum of (38) and (41), resulting in the more complete
expression (3) for the total BTR spectral radiant inten-
sity in the far diffraction zone. In the ultra-relativistic
regime the radiation lobe of the image charge (38) be-
comes narrow and intense in the direction of I+

1 while
the radiation lobe of the real charge (41) remains wide
and negligible relative to that of the image charge. In
this case (40) and (3) are identical.

5.C. Fresnel Approximation
In the longitudinal quadratic phase (”Fresnel”) approxi-
mation (section 3.A), the transverse electric field is given
by equation (18). We apply the diffraction formula, in-
tegrating over I+

1 (z) (31).
Figure 4 presents the results of the numerical compu-

tation for the distance of z = 10cm (γ = 75), which is
well within the approximation regime (19). We display
the results of the computation with the exact diffraction
formula (35) and with the ”Fresnel” diffraction formula
(18). The curves overlap. The integration length used
was one formation length. We also display for compar-
ison the field radiation pattern that would be expected
from the far-field formula (39).

The example shows good match between the exact and

−3 −2 −1 0 1 2 3
x 10−3

0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10−31

X(m)

Ĕ
2 ρ

 

 

Exact
Fresnel Approx

Far field Formula

Fig. 4. Transverse electric field amplitude in the near field
zone of TR (λ = 1µm, γ = 75, z = 10cm). The exact solution
and the Fresnel approximation, computation results overlap.
The numerical integration was performed over 1 formation
length. We show for comparison the field radiation pattern
that would be predicted from the far zone formula (39).

the Fresnel solutions, while the far field approximation
curve differs significantly, both in amplitude and peak
locations.

5.D. Reactive near field regime

It is evident that there is a spatial range in which the
Coulomb fields that are attached to the electron (or
its image charge) detach from the charged particle and
transform into free space diffracting radiation waves.
This range, analogous to the reactive near zone in an-
tenna theory, was investigated by Verzilov in [12] using
the Weizsäcker-Williams approximation. In this zone,
also called the “pre-wave” zone the optical diffraction
theory (including the Fresnel near field diffraction for-
mulae) does not apply. The wave zone range can be de-
termined from (20) for a general line source, where for
the case of TR from a relativistic beam we set ρ/z = γ
and an effective line source length of L = Lf (Eq. (24)).
The inverse inequality defining the “pre-wave zone” is
as in [12]:

z � Lf (42)

Our exact TR formula (35) is valid in all space, in-
cluding the “pre-wave zone” (42) and the Coulomb fields

range z < 0 (relevant only for the field of Ĭ1(z)). It is
instructive to test this validity by comparing the com-
puted field in these zones to the Coulomb field (1) of
an unperturbed drifting electron (propagating from −∞
to ∞). At the same time we probe the validity of the
Weizsäcker-Williams approximation that underlies the
previously used models.
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Fig. 5. Transverse electric field amplitude calculated using
the exact solution at various observation distances in the
reactive near-field compared to the Coulomb field of a rela-
tivistic particle (1). This demonstrates the transition of the
Coulomb field to radiation field. X-axis values are presented
in normalised units ρk/γ.

Figure 5 presents the transverse electric field variation
as a function of ρ calculated for an example of ultra-
relativistic beam (γ = 75), using the exact solution (35)
in the reactive near-field zone - z = 0, 1, 5, 20µm. The
Bessel K1 function solution of the analytical Coulomb
field expression [6] in the frequency domain is also shown
for comparison (broken line), validating for this exam-
ple the assumption of the Weizsäcker-Williams approx-
imation model, namely that the electric field incident
on the screen at z = 0 is almost the same as the field
of an unperturbed drifting electron (1). The horizontal
coordinate is presented in normalised units ρk/γ. The
reconstruction of the Coulomb field is very good. The
figure demonstrates vividly the transition of the electron
Coulomb field to radiation field in the near field (“pre-
wave”) zone.

We showed here that for an ultra-relativistic beam the
computed field distribution emitted by I+

1 right after the
point of incidence on the screen (z = 0) is similar to the
Coulomb field of an unperturbed drifting electron (K1

distribution), which is the assumption of the commonly
used Weizsäcker-Williams approximation. This is not
the case for a non relativistic or even a moderately rela-

3 3.5 4 4.5 5 5.5 6 6.5 7
0

1

2

3

4

5

6

x 10
−25

ρk/γ

|E
ρ
|2

 

 

z = 0

z = -10Lf

Coulomb fie ld sol.

Fig. 6. Comparison of the exact solution with the Coulomb
field solution for a moderate relativistic case of γ = 2.95. The
integration is over a range of 40Lf , where Lf = 17.4µm. The
exact solution at z = −10Lf resembles to the Coulomb field
solution, but the difference between the incident field, i.e.
the exact solution at z = 0 and the Coulomb field solution
is evident. X-axis values are presented in normalised units
ρk/γ.

tivistic beam. This observation and the realization that
the radiation source is a line source, rather than a planar
source, may have implication on the focusing condition
of the lens when imaging OTR and would affect the im-
age resolution.

5.E. Non relativistic and moderately relativistic case

As mentioned before the conventional K1 model is a
good approximation for the ultra-relativistic case, but
the method developed in this work is accurate for any
velocity of the charges. The example shown in Fig-
ure 6 corresponds to a moderately relativistic beam
(γ = 2.95). It demonstrates the difference between the
fiels distribution of the incoming electron (I+

1 ) before
incidence on the screen (z ≤ 0) obtained with the cur-
rent formalism and the K1 approximation for the case of
moderately relativistic beam. From Figure 6 it is clear
that the field incident on the screen (z = 0) is different
from the K1 approximation. The transverse range over
which the exact solution differs from the K1 approxima-
tion is of the order of a wavelength λ and therefore it
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would not affect significantly the far field radiation pat-
tern. The difference would be more significant for a non
relativistic beam example, in which case the Weizsäcker-
Williams model assumptions are not valid.

For comparison, Figure 6 displays the computed
Coulomb field distribution of the incoming electron also
in a plane z = −10Lf , far enough before the screen. In
this case, the computed solution looks similar to the K1

curve (Eq.(1)) in the coordinates scale shown.

6. Conclusions

We present in this paper an exact formulation for com-
puting the transition radiation complex field of an elec-
tron incident on a perfect conductor screen at any angle.
The derivation is based on a general dyadic Green func-
tion solution of the field radiation from a line current
source of arbitrary distribution. The general line source
solution yields approximate diffraction integral expres-
sions in the reactive near-field zone, the quadratic phase
”Fresnel” zone and the ”Fraunhofer” far-field zone. Ap-
plying the general formulation to the case of transition
radiation we obtained new TR diffraction integral ex-
pressions in all diffraction zones. The computation re-
sults replicate the standard TR radiation formula in
the far field when the electron path is semi-infinite. It
also demonstrates vividly the transition of the electron
Coulomb field into radiation field after the incidence
point and it shows that the field incident on the screen
differs from the K1 approximation.

The result of exact complex field solution from a single
electron, including both amplitude and phase, would be
useful for simulating imaging of coherent OTR effects,
which are the result of coherent interference of the radi-
ation field from an electron beam in which the electron
distribution is phase correlated. In addition, the for-
malism presented in this work allows OTR calculations
from beams in which the charges do not necessarily have
a constant velocity.

In conclusion, we point out that even though the for-
mulation derived in this paper referred to electrons, it
applies as well (except for a change of sign of the field for
positive charge) to any charged particle beam as protons
or ion beams. In fact, the derivation may be more rele-
vant for these cases, that are often in the non relativistic
or moderately relativistic regime.
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